Переносное движение точки. Движение: абсолютное, относительное, переносное. Теорема Эйлера. Угловая скорость. Постановка задач на сложное движение точки

До сих пор мы изучали движение точки или тела по отношению к одной заданной системе отсчета. Однако в ряде случаев при реше­нии задач механики оказывается целесообразным (а иногда и не­обходимым) рассматривать движение точки (или тела) одновременно по отношению к двум системам отсчета, из которых одна считается основной или условно неподвиж­ной, а другая определенным образом движется по отношению к первой. Движение, совершаемое при этом точкой (или телом), называют со­ставным или сложным . Например, шар, катящийся по палубе движу­щегося парохода, можно считать совершающим по отношению к бе­регу сложное движение, состоящее из качения по отношению к палубе (подвижная система отсчета), и движение вместе с палубой парохода по отношению к берегу (не­подвижная система отсчета). Таким путем сложное движение шара разлагается на два более простых и более легко исследуемых.

Рис.48

Рассмотрим точку М , движущуюся по отношению к подвижно системе отсчета Oxyz , которая в свою очередь как-то движется отно­сительно другой системы отсчета , которую называем основ­ной или условно неподвижной (рис. 48). Каждая из этих систем отсчета связана, конечно, с определенным телом, на чертеже не по­казанным. Введем следующие определения.

1. Движение, совершаемое точкой М по отношению к подвиж­ной системе отсчета (к осям Oxyz ), называется относительным движением (такое движение будет видеть наблюдатель, связанный с этими осями и перемещающийся вместе с ними). Траектория АВ , описываемая точкой в относительном движении, называется относи­тельной траекторией. Скорость точки М по отношению к осям Oxyz называется относительной скоростью (обозначается ), a ускорение - относительным ускорением (обозначается ). Из определения следует, что при вычислении и можно движение осей Oxyz во внимание не принимать (рассматривать их как непод­вижные).

2. Движение, совершаемое подвижной системой отсчета Oxyz (и всеми неизменно связанными с нею точками пространства) по отно­шению к неподвижной системе , является для точки М пере­носным движением .

Скорость той неизменно связанной с подвижными осями Oxyz точки m , с которой в данный момент времени совпадает движущаяся точка М , называется переносной скоростью точки М в этот момент (обозначается ), а ускорение этой точки m - переносным ускорением точки М (обозначается ). Таким образом,

Если представить себе, что относительное движение точки про­исходит по поверхности (или внутри) твердого тела, с которым жестко связаны подвижные осиOxyz , то переносной скоростью (или ускорением) точки М в данный момент времени будет скорость (или ускорение) той точки т тела, с которой в этот момент совпадает точка М .

3. Движение, совершаемое точкой по отношению к неподвижной системе отсчета , называется абсолютным или сложным. Траектория CD этого движения называется абсолютной траекто­рией, скорость - абсолютной скоростью (обозначается ) и ускорение - абсолютным ускорением (обозначается ).

В приведенном выше примере движение шара относительно палу­бы парохода будет относительным, а скорость - относительной ско­ростью шара; движение парохода по отношению к берегу будет для шара переносным движением, а скорость той точки палубы, которой в данный момент времени касается шар будет в этот момент его пере­носной скоростью; наконец, движение шара по отношению к берегу будет его абсолютным движением, а скорость - абсолютной ско­ростью шара.

При исследовании сложного движения точки полезно применять «Правило остановки». Для того, чтобы неподвижный наблюдатель увидел относительное движение точки, надо остановить переносное движение.

Тогда будет происходить только относительное движение. Относительное движение станет абсолютным. И наоборот, если остановить относительное движение, переносное станет абсолютным и неподвижный наблюдатель увидит только это переносное движение.

В последнем случае, при определении переносного движения точки, обнаруживается одно очень важное обстоятельство. Переносное движение точки зависит от того в какой момент будет остановлено относительное движение, от того, где точка находится на среде в этот момент. Так как, вообще говоря, все точки среды движутся по-разному. Поэтому логичнее определять переносное движение точки как абсолютное движение той точки среды, с которой совпадает в данный момент движущаяся точка.

22.Teopeмa сложения скоростей.

Пусть некоторая точка М со­вершает движение по отношению к системе отсчета Oxyz , которая са­ма движется произвольным образом по отношению к неподвижной систе­ме отсчета , (рис.49).

Конечно, абсолютное движение точки М определяется уравнениями

Относительное движение – в движущихся осях уравнениями

Рис. 10.3.

Уравнений, определяющих переносное движение точки, не может быть вообще. Так как, по определению, переносное движение точки М – это движение относительно неподвижных осей той точки системы , с которой совпадает точка в данный момент. Но все точки подвижной сис­темы движутся по-разному.



Поло­жение подвижной системы отсчета может быть также определено, если задать положение точки О радиусом-вектором , проведенным из начала неподвижной системы отсчета, и направления единичных векторов подвижных осей Оx, Oy, Oz .

Рис.49

Произвольное переносное движение подвижной системы отсчета слагается из поступательного движения со скоростью точки О и движения вокруг мгновенной оси вращения ОР , походящей через точку О , с мгновенной угловой скоростью . Вследствие переносного движения подвижной системы отсчета радиус-вектора и направления единичных векторов изменяются. Если векторы заданы в функции времени, то переносное движение подвижной системы отсчета вполне определено.

Положение точки М по отношению к подвижной системе отсчета можно определить радиусом-вектором

где координаты x, y, z точки М изменяются с течением времени вследствие движения точки М относительно подвижной системы отсчета. Если радиус-вектор задан в функции времени, то относительное движение точки М , т.е. движение этой точки относительно подвижной системы отсчета, задано.

Положение точки М относительно неподвижной системы отсчета , может быть определено радиусом-вектором . Из рис.49 видно, что

Если относительные координаты x,y,z точки М и векторы определены в функции времени, то слагающееся из относительного и переносного движений составное движение точки М , т.е. движение этой точки по отношению к неподвижной системе отсчета, также надо считать заданным.

Скорость составного движения точки М , или абсолютная скорость этой точки, равна, очевидно, производной от радиуса-вектора точки M по времени t

Поэтому, дифференцируя равенство (1) по времени t , получим

Разобьем слагаемые в правой части этого равенства на две группы по следующему признаку. К первой группе отнесем те слагаемые, которые содержат производные только от относительных координат x,y,z, а ко второй - те слагаемые, которые содержат производные от векторов , т.е. от величин, изменяющихся только вследствие переносного движения подвижной системы отсчета

Каждая из групп слагаемых, обозначенных через и , представляет собой, по крайней мере, по размерности некоторую скорость. Выясним физический смысл скоростей и .

Скорость , как это следует из равенства (3), вычисляется в предположении, что изменяются только относительные координаты x,y,z точки М , но векторы остаются постоянными, т.е. подвижная система отсчета Oxyz как бы условно считается неподвижной. Итак, скорость представляет собой относительную скорость точки М .

Скорость вычисляется так, как будто бы точка М не двигалась относительно подвижной системы отсчета, так как производные x,y,z в равенство (4) не входят. Поэтому скорость представляет собой переносную скорость точки М .

Итак, . (5)

Это равенство выражает теорему сложения скоростей в случае, когда переносное движение является произвольным: абсолютная скорость точки М равна геометрической сумме переносной и относительной скоростей этой точки.

Пример 13. Колечко М движется по вращающемуся стержню так, что (см) и (рад).

Рис.50

Ранее было установлено, что тра­ектория относительного движения – прямая линия, сов­падающая со стерж­нем, и движение это определяется уравнением . Траектория пе­реносного движения точки М в мо­мент времени t – окружность радиуса .

Поэтому относительная ско­рость . И направлена по ка­сательной к траектории вдоль стержня (рис.50). Переносная скорость колечка, как при вращении вокруг оси, . Направлен вектор этой скорости по касательной к траектории переносного движения, перпендикулярно стержню.

Абсолютная скорость колечка . Величина ее, т.к.

23. Теорема сложения ускорений. Ускорение Кориолиса.

Ускорение составного движения точки М , или абсолютное ускорение этой точки, равно, очевидно, производной от абсолютной скорости точки М по времени t

Поэтому, дифференцируя равенство по времени, получим

Разделим слагаемые правой части этого равенства на три группы.

К первой группе отнесем слагаемые, содержащие только производные от относительных координат x,y и z , но не содержащие производные от векторов :

Ко второй группе отнесем слагаемые, которые содержат только производные от векторов , но не содержащие производных от относительных координат x,y,z :

Осталась еще одна группа слагаемых, которые не могли быть отнесены ни к первой, ни ко второй, так как они содержат производные от всех переменных x, y,z , . Обозначим эту группу слагаемых через :

Каждая из выделенных групп представляет собой, по крайней мере по размерности, некоторое ускорение. Выясним физический смысл всех трех ускорений: .

Ускорение , как это видно из равенства, вычисляется так, как если бы относительные координаты x,y,z изменялись с течением времени, а векторы оставались неизменными, т.е. подвижная система отсчета Oxyz как бы покоилась, а точка М двигалась. Поэтому ускорение представляет собой относительное ускорение точки М . Так как ускорение (и скорость) относительного движения вычисляется в предположении, что подвижная система отсчета находится а покое, то для определения относительного ускорения (и скорости) можно пользоваться всеми правилами, изложенными ранее в кинематике точки.

Ускорение , как это видно из равенства, вычисляется в предположении, что сама точка М покоится по отношению к подвижной системе отсчета Oxyz (x =const, y =const, z =const) и перемещается вместе с этой системой отсчета по отношению к неподвижной системе отсчета . Поэтому ускорение представляет собой переносное ускорение точки М .

Третья группа слагаемых определяет ускорение , которое не может быть отнесено не к относительному ускорению , так как содержит в своем выражении производные не к переносному ускорению , так как содержит в своем выражении производные

Преобразуем правую часть равенства, припомнив, что

Подставляя эти значения производных в равенства, получим

Здесь вектор есть относительная скорость точки М , поэтому

Ускорение называют ускорением Кориолиса . Ввиду того, что ускорение Кориолиса появляется в случае вращения подвижной системы отсчета, его называют еще поворотным ускорением.

С физической точки зрения появление поворотного ускорения точки объясняется взаимным влиянием переносного и относительного движений.

Итак, ускорение Кориолиса точки равно по модулю и направлению удвоенному векторному произведению угловой скорости переносного движения на относительную скорость точки.

Равенство, которое теперь можно сокращенно записать в виде

представляет теорему сложения ускорений в случае, когда переносное движение является произвольным: абсолютное ускорение точки равно векторной сумме переносного, относительного и поворотного ускоре­ний. Эту теорему часто называют теоремой Кориолиса.

Из формулы следует, что модуль поворотного ускорения будет

где - угол между вектором и вектором . Чтобы определить направление поворотного ускорения , нужно мысленно перенести вектор в точку М и руководствоваться правилом векторной алгебры. Согласно этому правилу, вектор нужно направлять перпендикуляр­но к плоскости, определяемой векторами и , и так, чтобы, смотря с конца вектора , наблюдатель мог видеть кратчайший поворот от к происходящим против движения часовой стрелки (рис. 30). в данный момент времени обращается в нуль.

Кроме того, поворотное ускорение точки может, очевидно, обращать­ся в нуль, если:

а) вектор относительной скорости точки параллелен вектору уг­ловой скорости переносного вращения, т.е. относительное движение точки происходит по направлению, параллельному оси переносного вращения;

б) точка не имеет движения относительно подвижной системы от­счета или относительная скорость точки в данный момент времени равна нулю ().

Пример 14. Пусть тело вращается вокруг неподвижной оси z . По поверхности его движется точка М (рис. 52). Конечно, скорость этого движения точки – относительная скорость , а скорость вращения тела – угловая скорость переносного движения .

Ускорение Кориолиса , направлено перпен­дикулярно этим двум векторам, по правилу направления вектора век­торного произведения. Так, как пока­зано на рис. 52.

Рис.52

Нетрудно сформулировать более удобное правило определения направ­ления вектора : нужно спроектировать вектор относитель­ной ско­рости на плоскость перпендикуляр­ную оси переносного вращения и за­тем повер­нуть эту проекцию на 90 градусов в плоскости по направлению переносного вращения. Конечное положение проекции вектора укажет направление кориолисова ускорения. (Это правило было предложено Н.Е. Жуковским).

Пример 15. (Вернемся к примеру 13). Найдем абсолютное ускорение колечка М

Сложное движение точки

О движении тела судят по движению каждой его точки. Ранее мы рассматривали движение точки в некоторой системе координат, которая условно принималась за неподвижную. Однако на практике приходиться решать задачи, в которых известно, как движется точка относительно одной системы координат и требуется выяснить, как она движется относительно другой системы координат, если известно, как эти системы координат движутся друг относительно друга. Чтобы описывать движение точки, переходя от одной системы координат к другой, необходимо установить, как связаны между собой величины, характеризующие движение точки в этих системах. С этой целью одну систему координат принимают условно за неподвижную, а другую за подвижную и вводят понятия абсолютного, относительного и переносного движения точки.

Абсолютное движение – движение точки в неподвижной системе координат.

Относительное движение – движение точки в подвижной системе координат.

Переносное движение – движение подвижного пространства относительно неподвижного.

Задачи, в которых задано переносное движение и нужно найти абсолютное движение, называются задачами на сложение движений .

В ряде случаев приходится решать обратную задачу.

Рациональным выбором подвижной системы координат – часто удаётся сложное абсолютное движение точки свести к двум простым: относительному и переносному. Такие задачи называются задачами на разложение движений .

неподвижной системе координат называют абсолютной скоростью и абсолютным ускорением .


Скорость и ускорение точки по отношению к подвижной системе координат называют относительной скоростью и относительным ускорением .

Переносной скоростью и переносным ускорением движущейся точки называют абсолютную скорость и абсолютное ускорение той точки подвижного пространства , с которой в данный момент времени совпадает движущаяся точка.

Все полученные ранее результаты для скорости и ускорения полностью применимы к относительному движению, ибо при их выводе мы не накладываем никаких ограничений на выбор системы координат.

Закон сложения скоростей

Закон сложения скоростей определяет связь между скоростями точки М в неподвижной системе координат XYZ и подвижной системе координат https://pandia.ru/text/78/244/images/image002_52.jpg" width="588" height="243">

– закон сложения скоростей.

КИНЕМАТИКА АБСОЛЮТНО ТВЕРДОГО ТЕЛА

Перейдём к рассмотрению движения абсолютно твёрдого тела (АТТ). Твёрдое тело состоит из бесконечного числа точек, однако, как будет показано позднее, для описания движения АТТ нет необходимости задавать движение каждой его точки.

Неизменность расстояния между точками твердого тела приводит к зависимости между скоростями отдельных точек. Эта зависимость выражается следующей основной теоремой кинематики твердого тела: проекции скоростей двух любых точек твердого тела на отрезок, их соединяющий, равны.

Для доказательства рассмотрим произвольные точки А и В твердого тела.

Положения точек А и В в пространстве зададим радиусами-векторами и https://pandia.ru/text/78/244/images/image007_36.gif" width="29" height="24 src=">, направление которого в процессе движения тела меняется, а модуль сохраняется постоянным (в силу неизменности расстояния между точками твердого тела). Данный вектор можно представить в виде . Дифференцируя это равенство по времени, получаем

. (2.1)

Для определения вектора заметим, что , где AB модуль вектора . Так как АВ не изменяется с течение времени, то, продифференцировав это равенство по t , получим:

,

т. е..gif" width="29" height="24 src="> направлена перпендикулярно к самому вектору :

Проектируя теперь каждую часть равенства (2..gif" width="37" height="24"> – пр.=0

,

что и доказывает сформулированную теорему.

Поступательное движение твёрдого тела

Рассмотрим вначале простые случаи движения – поступательное движение твёрдого тела и вращение твёрдого тела.

Простейшим видом движения твёрдого тела является такое движение, при котором векторы скорости трёх его точек, не лежащих на одной прямой, равны между собой в каждый момент времени. Определим положение этих точек в некоторый момент времени радиус-векторами:

https://pandia.ru/text/78/244/images/image020_14.gif" width="263 height=43" height="43">

Следовательно, векторы не зависят от времени и, следовательно, перемещаются в пространстве, оставаясь параллельными сами себе. Три точки твёрдого тела определяют систему координат, чётко связанную с твёрдым телом. В рассматриваемом случае движение будет таким, что оси будут перемещаться, оставаясь параллельными сами себе. Но это означает, что любая прямая, проведённая в твёрдом теле, остаётся в процессе движения параллельной самой себе. Такое движение называется поступательным (например, движение кабины в аттракционе «колесо обозрения»).

Выберем в твёрдом теле, движущимся поступательно, две произвольные точки А и В.

При поступательном движении АТТ

(2.2)

Поскольку то (2.2) примет вид:

Точки А и В выбраны произвольно. Следовательно: при поступательном движении все точки твёрдого тела имеют в каждый данный момент времени одинаковые векторы скорости.


Продифференцировав по времени уравнение (2..gif" width="56" height="24"> (2.4)

Точки А и В выбраны произвольно. Следовательно: точки твёрдого тела, движущегося поступательно, имеют в каждый данный момент времени одинаковые ускорения .

Т. к. , траектории точек А и В являются конгруэнтными, т. е. их. можно совместить друг с другом при наложении. Таким образом, траектории, описываемые точками твёрдого тела, движущегося поступательно, одинаковы и одинаково расположены.

Из полученных результатов следует сделать вывод: для описания поступательного движения твёрдого тела достаточно задать движение лишь одной его точки .

Вращение твердого тела

Вращением твёрдого тела называется такой вид движения, при котором, по крайней мере, одна точка твёрдого тела остаётся неподвижной. Рассмотрим, однако, более простой случай – вращение АТТ вокруг неподвижной оси.

Вращение абсолютно твёрдого тела вокруг неподвижной оси

Закрепим две точки АТТ:. Рассмотрим, как будут двигаться все точки твёрдого тела и научимся определять скорости и ускорения этих точек. Ясно, что точки твёрдого тела, лежащие на прямой, проходящей через две закреплённые точки, двигаться не будут: эту прямую называют неподвижной осью вращения . Движение твёрдого тела, при котором по крайней мере две его точки неподвижны, называют вращением АТТ вокруг неподвижной оси.

Ясно, что точки не лежащие на оси вращения описывают окружности, центры которых лежат на оси вращения. Плоскости, в которых лежат такие окружности, перпендикулярны оси вращения. Следовательно: нам известны траектории всех точек тела. Это позволяет приступить к нахождению скорости любой точки твёрдого тела.

При естественном способе задания движения точки:

Выберем неподвижную систему отсчёта, ось 0 Z которой совпадает с осью вращения. Угол между неподвижной плоскостью X0 Z , проходящей через ось вращения и плоскостью, жёстко связанной с твёрдым телом и проходящей через ось вращения, обозначим через https://pandia.ru/text/78/244/images/image036_12.gif" width="73" height="31">. Рассмотрим движение точки М по окружности радиуса R.

; ; https://pandia.ru/text/78/244/images/image040_13.gif" width="20" height="26 src="> являются постоянными:

Подставив (2.6) в (2.5) получим:

Эта формула неудобна, потому что сюда входит единичный вектор https://pandia.ru/text/78/244/images/image044_12.gif" width="14" height="18 src=">. Он должен входить в формулу для скорости. Для этого проведём следующие преобразования:

используя, что , перепишем соотношение (2.7) в виде

(2.8)

Обозначим:

– не зависит от выбора рассматриваемой точки М; (2.9)

– вектор, проведенный из центра окружности к точке М. (2.10)

Ясно, что модуль равен радиусу окружности.

Подставим (2.9) и (2.10) в (2.8):

https://pandia.ru/text/78/244/images/image051_11.gif" width="91" height="27"> (2.12)

Направления совпадают с направлением единичного вектора касания https://pandia.ru/text/78/244/images/image054_10.gif" width="64" height="29">– линейная скорость точки М. (2.13)

– угловая скорость. (2.14)

Угловая скорость – величина одинаковая для всех точек твердого тела.

Линейная скорость любой точки твёрдого тела, вращающегося вокруг неподвижной оси, равна векторному произведению угловой скорости АТТ на радиус-вектор, проведённый из произвольной точки оси вращения, разложим https://pandia.ru/text/78/244/images/image057_9.gif" width="145" height="29">. (2.15)

Сравнивая (2.15) и (2.14) получим:

;

Модуль угловой скорости связан с частотой вращения абсолютно твердого тела:

При вращении тела его угловая скорость может изменяться, необходимо уметь определить угловую скорость тела в любой момент времени. Для этого введена величина, которая характеризует изменение угловой скорости с течением времени. Эту величину называют угловым ускорением.

Дадим определение углового ускорения.

Пусть в момент времени t угловая скорость . А в момент времени t+∆ t угловая скорость равна . Составим отношение изменения угловой скорости к промежутку времени, в течение которого это изменение происходит, и найдём предел этого отношения при t → 0. В механике этот предел называют угловым ускорением тела и обозначают поэтому:

.

Угловое ускорение – величина одинаковая для всех точек твердого тела.

Единицей измерения углового ускорения является https://pandia.ru/text/78/244/images/image068_7.gif" width="273" height="48">.

Для углового ускорения, его проекции на ось 0 Z , модуля углового ускорения справедливы соотношения:

(2.16)

Перепишем выражение для ускорения точки:

(2.17)

Тангенциальное ускорение любой точки твёрдого тела, вращающегося вокруг неподвижной оси, равно векторному произведению углового ускорения тела на радиус – вектор этой точки, проведённой из произвольной точки оси вращения.

Вращение твёрдого тела с постоянным угловым ускорением

Посмотрим, как при этом движении запишется кинематическое уравнение движения тела. Вначале получим формулу, по которой в данном случае можно найти угловую скорость тела. Направим ось 0 Z вдоль оси вращения тела.

Так как , то https://pandia.ru/text/78/244/images/image078_5.gif" width="98" height="54"> (т. к. ) Вращательные движения (физика)" href="/text/category/vrashatelmznie_dvizheniya__fizika_/" rel="bookmark">вращательного движения вокруг полюса с угловой скоростью, не зависящей от выбора полюса .

Можно показать, что скорость любой точки тела относительно неподвижной системы координат равна:

– угловое ускорение вращения тела относительно полюса.

Закон сложения ускорений

Формулу, выражающую закон сложения ускорений в сложном движении называют формулой Кориолиса, а выражаемый ею факт – теоремой Кориолиса. Согласно этой теореме абсолютное ускорение точки равно сумме трёх векторов: вектора относительного ускорения, вектора переносного ускорения и вектора, представляющего собой поворотное или кориолисово ускорение:

(2.21)

Оно появляется вследствие двух причин, не учитываемых относительным и переносным ускорениями: не учитывает изменение направления относительной скорости в неподвижном пространстве вследствие вращения подвижной системы координат в переносном движении. не учитывает изменения переносной скорости, получающегося при переходе движущейся точки от одной точки подвижного пространства к другой (этот переход вызван относительным движением).

В следующих случаях:

СЛОЖНЫЕ ДВИЖЕНИЯ ТОЧКИ

§ 1. Абсолютное, относительное и переносное движения точки

В ряде случаев приходится рассматривать движение точки по отношению к системе координат О 1 ξηζ, которая, в свою очередь, движется по отношению к другой системе координат Охуz условно принятой в качестве неподвижной. В механике каждую из указан­ных систем координат связывают с некоторым телом. Например, рас­смотрим качение без скольжения колеса вагона по рель­су. С рельсом свяжем неподвижную систему координат Аху, а подвижную систему Oξη свяжем с центром колеса и предположим, что она движется поступательно. Движе­ние точки на ободе колеса является составным или сложным.

Введем следующие определения:

1. Движение точки относительно системы координат Охуz (рис. 53) называется абсолютным.

2. Движение точки относительно подвижной системы координат O 1 ξηζ называется населенным.

3. Переносным движением точки называют движение той точки тела, связанного с подвижной системой координат О 1 ξηζ , относи­тельно неподвижной системы координат, с которой в данный момент совпадает рассматриваемая движущаяся точка.

Таким образом, переносное движение вызвано движением под­вижной системы координат по отношению к неподвижной. В приве­денном примере с колесом переносное движение точки обода колеса обусловлено поступательным движением системы координат О 1 ξηζ по отношению к неподвижной системе координат Аху.

Уравнения абсолютного движения точки получим, выразив коор­динаты точки х, у,z как функции времени:

х=х(t ), у = у(t ), z = z (t ).

Уравнения относительного движения точки имеют вид

ξ = ξ (t ), η = η (t), ζ = ζ (t ).

В параметрической форме уравнения (11.76) выражают уравне­ния абсолютной траектории, а уравнения (11.77) - соответственно уравнения относительной траектории.

Различают также абсолютную, переносную и от­носительную скорость и соответственно абсолютное, переносное и относительное ускорения точки. Абсо­лютную скорость обозначают υ a , относительную - υ r , переносную - υ е Соответственно ускорения обознача­ют: ω а , ω r и ω е .

Основной задачей кинематики сложного движения точки является установление зависимости между скоростями и ускорениями точки в двух системах координат: неподвижной и под­вижной.

Для доказательства теорем о сложении скоростей и ускоре­ний в сложном движении точки введем понятие о локальной или относительной производной.


Теорема о сложении скоростей

Теорема . При сложном (составном) движении точки ее абсолютная скорость υ a равна векторной сумме отно­сительной υ r и переносной υ е скоростей.

Пусть точка М совершает одновременные движения по отношению к неподвижной и подвижной системам координат (рис. 56). Обозначим угловую скорость поворота системы коор­динат Оξηζ через ω . Положение точки М определяется радиусом-вектором r .

Установим соотношение между скоростями точки М по отноше­нию к двум системам координат - неподвижной и подвижной. На основании доказанной в предыдущем параграфе теоремы

Из кинематики точки известно, что первая производная от ра­диуса-вектора движущейся точки по времени выражает скорость этой точки. Поэтому = r = υ а - абсолютная скорость, =υ r - относительная скорость,

а ω xr = υ е - переносная ско­рость точки М. Следовательно,

υ а = υ r + υ е

Формула (11.79) выражает правило параллелограмма скоростей. Модуль абсолютной скорости найдем по теореме косинусов:



В некоторых задачах кинематики требуется определить относи­тельную скорость υ r . Из (11.79) следует

υ r = υ а +(- υ е) .

Таким образом, чтобы построить вектор относительной скорости, нужно геометрически сложить абсолютную скорость с век­тором, равным по абсолютной величине, но противоположно направ­ленным переносной скорости.

Общая постановка задачи об относительном движении такова: движение точки определяется наблюдателями, связанными с двумя различными координатными системами (системами отсчета), причем эти системы движутся заданным образом друг по отношению к другу. Каждый наблюдатель определяет кинематические элементы движе­ния: траекторию, скорость и ускорение в своей системе отсчета. Ставится задача: зная движение одной системы отсчета по отно­шению к другой, найти связь между кинематическими элементами движения точки по отношению к каждой системе в отдельности. Предположим, что движение точки М в пространстве рассма­тривается в двух движущихся друг по отношению к другу системах координат: Oxyz , и (рис.41). В зависимости от содержания стоящей перед нами задачи одну из этих систем Oxyz примем за основную и назовем абсолютной системой и все кине­матические элементы его абсолютными. Другую систему назовем относительной и соответственно движение по отношению к этой системе, а также его кинематические элементы относитель­ными. Термины «абсолютный» и «относительный» имеют здесь ус­ловное значение; при рассмотрении движений может оказаться целе­сообразным то одну, то другую систему принимать за абсолютную. Элементы абсолютного движения будем обозначать подстрочным индексом «а », а относительного - индексом «r ».

Введем понятие переносного движения, элементы которого будем обозначать подстрочным индексом «е ». Переносным движением точки будем называть движение (по отношению к абсолютной системе) того пункта относительной системы, через который в рассматриваемый момент времени проходит движущаяся точка. Понятие переносного движения нуждается в пояснении. Необхо­димо четко различать точку, абсолютное и относительное движение которой рассматривается, от той, неизменно связанной с относи­тельной системой точки, через которую в данный момент проходит движущаяся точка. Обычно та и другая точка обо­значены одной буквой М , так как рисунок не передает движения; на самом деле это две различные точки, движущиеся друг по от­ношению к другу.

Остановимся на двух иллюстрациях понятия переносного дви­жения. Если человек идет по движущейся платформе, то можно рассматривать, во-первых, «абсолютное» движение человека по от­ношению к земле, во-вторых, «относительное» его движение по платформе. Переносным движением при этом будет являться движе­ние по отношению к земле того места платформы, по которому проходит в данный момент человек.

§ 2. 5. Движение: абсолютное, относительное, переносное. Теорема Эйлера. Угловая скорость.

Дополнительно к неподвижным осям Oxyz (система S) введем в рассмотрение некоторое подвижное твердое тело и неизменно связанную с ним систему прямоугольных осей координат O’x’y’z’ (система S’).

Движение точки относительно подвижной системы осей S’ называется относительным движением.

Движение точки относительно неподвижных осей S называется абсолютным движением.

Переносным движением точки за интервал времени (t,t+Dt) называется то движение по отношению к осям S, которая эта точка имела бы, если бы в момент времени t и на интервал (t,t+Dt) она была неизменно связана с подвижной системой осей и, следовательно, перемещалась бы вместе с этой системой.

Траектория, скорость и ускорение называются абсолютными, относительными или переносными, смотря по тому, относятся ли они к движению абсолютному, относительному или переносному.

Теорема Эйлера: Если относительно системы S система S" имеет одну неподвижную точку, то перемещение S" из одного произвольного положения в любое другое может быть совершено одним поворотом на определенный угол относительно оси, проходящей через эту неподвижную точку.

Для доказательства достаточно показать возможность перевода одним поворотом дуги, например, .

Проведем два экватора: a, перпендикулярный середине x 1 "x 2 ", и b, перпендикулярный середине z 1 "z 2 ". Получим две точки пересечения этих экваторов – с и d.

Dx 1 "z 1 "d = Dz 2 "x 2 "d

(так как x 1 "z 1 " = x 2 "z 2 ", а x 1 "d = x 2 "d в силу того, что точка d лежит на экваторе, перпендикулярном середине x 1 "x 2 ",

z 1 "d = z 2 "d по той же причине)

Таким образом, Ðx 1 "dz 1 " = Ðz 2 "dx 2 " и угол между дугами x 1 "d и x 2 "d равен углу между дугами z 1 "d и z 2 "d, то есть нужно повернуть x 1 "z 1 " относительно оси dO"c на угол x 1 "dz 1 " (или равный ему z 2 "dx 2 ")

Теорема Эйлера справедлива и для конечных поворотов и для бесконечно малых. Хотя последовательность бесконечно малых поворотов может быть любой – результат будет тем же, конечные же повороты не коммутируют. Это тем более справедливо для бесконечно малых поворотов, чем ближе дуги, описываемые какой-либо точкой, к хордам, соединяющим концы дуг.

При рассмотрении задач о движении тела с одной закрепленной точкой, которые имеют большое практическое значение, для определения (фиксации) положения системы S" относительно S широко используются три угла Эйлера.

Пересечение плоскостей O"xy и O"x"y" дает прямую, которую называют линией узлов (орт линии узлов - ). Первый угол Эйлера j - угол между осью O"x и линией узлов. Второй угол y - угол между линией узлов и осью O"x". Третий угол q - угол между осями O"z и O"z".

Эти три угла однозначно определяют положение системы S" относительно S

Таким образом, при бесконечно малом повороте системы S" относительно S на углы dj,dy,dq (некоторые из них могут быть равными нулю) их можно заменить одним поворотом на угол dc вокруг некоторой оси, проходящей через точку O".

Введем в рассмотрение вектор бесконечно малого поворота:

(здесь направлен по оси вращения по правилу правого винта)

Величина и направление вектора dc при сложном движении могут изменяться. Ось называется осью мгновенного вращения. Посмотрим, что происходит с ортами системы S" при ее повороте на угол

§ 2. 6. Сложное движение точки.

продифференцировав это соотношение по времени, получим:

Абсолютная скорость точки (относительно системы S),

Скорость начала координат S" относительно S,

Не является скоростью точки М относительно системы S", так как орты этой системы являются функциями времени.

,

используя формулы (2.5.1) будем иметь:

Последнее слагаемое означает, что производная берется при неизменных ортах системы O’x’y’z’, .

Теперь для скоростей имеем:

здесь v h -переносная, v – абсолютная, v’ – относительная скорость точки, то есть получена связь этих скоростей. Переносная скорость состоит из двух слагаемых: первое присутствует в том случае, если подвижная система отсчета движется поступательно, второе появляется в том случае, если подвижная система отсчета совершает вращение.

Для получения связи ускорений продифференцируем по времени соотношение для скоростей:

Абсолютное ускорение, - ускорение начала координат S’ относительно S.