Кого считают создателем фотографии. Краткая история развития фотографии. Очарование старинных фотографий. История черно-белой фотографии

Именно этим людям, которые смотрят на жизнь через объектив своих камер и посвящен — Всемирный День фотографии (World Photography Day), который фотографы многих стран мира ежегодно отмечают 19 августа. Праздник учрежден в 2009 года по инициативе австралийского фотографа Корске Ара.

С греческого языка фотография переводится как светопись. Фотографию по праву можно считать одним из главных изобретений 19-го века.

История

Дата празднования была выбрана неслучайно — 9 августа 1839 года французский художник и изобретатель Луи Дагер представил Французской академии наук процесс получения дагеротипа — изображения на светочувствительной металлической пластинке, а через десять дней правительство Франции провозгласило его изобретение "подарком миру".

Дагеротипия считается первым практическим способом фотографирования. Она была создана около 1822 года французским изобретателем Жозефом Ньепсом, но именно благодаря Дагеру этот способ получения фотографического изображения стал известен во всем мире.

"Вид из окна" - первая фотография в мире, сделанная в 1826 или 1827 году французским изобретателем Жозефом Ньепсом.

Дагеротипия была довольно быстро вытеснена коллодионным процессом, однако именно она считается родоначальницей современной фотографии.

В последующие годы множество ученых продолжало совершенствовать процесс получения фотографий, используя разные материалы и реактивы.

В 1861 году Джеймс Максвелл сумел воспроизвести цветное фото, а изобретение в 1981 году компанией Sony цифровой камеры, позволило делать цифровые фотографии и отказаться от традиционной фотопленки, хотя многие профессиональные фотографы по сей день предпочитают ее в своей работе.

Сегодня фотография доступна каждому. В век цифровых технологий, делать снимки или селфи можно и на простой мобильный телефон, которые потом заставят людей улыбнуться, взгрустнуть или затаить дыхание.

Первые фотографии

Первая фотография, которая сохранилась до наших дней, принадлежит французского изобретателю Жозефу Ньепсу. Кадр, который он назвал "Вид из окна", ему удалось получить в 1826 году.

А человека впервые запечатлеть смог другой французский изобретатель Луи Дагер в 1838 году.

Первый фотоавтопортрет в мире, нечто вроде селфи был сделан примерно осенью 1839 года известным американским фотографом, пионер фотографии Робертом Корнелиусом. После снятия крышки с фотообъектива, он бросился в кадр, где просидел больше минуты до закрытия линзы.

Первое фото запуска ракеты с мыса Канаверал в июле 1950 года принадлежит NASA, на которой запечатлен запуск Bumper V-2.

Первую цветную фотографию, на которой запечатлена трехцветная лента, завязанная в бант, представил Джеймс Клерк Максвелл в 1861 году на лекции в Королевском институте в Лондоне. Идею этого снимка он вынашивал целых шесть лет.

Фотография является уникальным явлением, которое способно запечатлеть навсегда важные события, интересные моменты, все красивое и любимое.

© photo: Sputnik / Levan Avlabreli

Для абсолютного большинства людей фотоснимки являются ценными документами, свидетельствами их личной истории длиною в жизнь. Поэтому люди пытаются запечатлеть себя для "истории" сами, когда некого попросить. Видимо это положило начало появлению такого явления, как селфи.

Селфи

Первое селфи в истории предположительно было снято в 1920 году. На снимке пятеро мужчин позируют перед камерой, которые стоят на крыше Marceau Studio в Нью-Йорке.

Говорят, что эти джентльмены были сотрудниками популярной фотостудии Byron Company, которая ведет свою историю с 1892 года.

Селфи (в переводе с английского — сам, себя), также встречаются названия себяшка, самострел — разновидность автопортрета, заключающаяся в запечатлении самого себя на фотокамеру, иногда при помощи зеркала, шнура или таймера.

Термин приобрел известность в начале 21 века благодаря развитию встроенных функций фотоаппарата мобильных устройств.

Развлекают себя новым веянием в фотографии большинство подростков и молодых людей.

© photo: Sputnik / Alexander Imedashvili

Селфи звезд регулярно являются источником информации об их жизни, наравне с глянцевыми кадрами появляются в прессе, становятся предметом обсуждения, критики и объектом бесконечных лайков.

Мир охватила эпидемия селфи. И поскольку влияние селфи на жизнь общества множится, ученые и психологи разных стран заинтересовались степенью и последствиями этого необычного явления.

Психологи установили, что данная проблема появилась в современном мире в связи со снижением ценности межличностных отношений. Люди все больше заняты карьерой, бизнесом, увеличением доходов и накоплением денег.

© photo: Sputnik / Александр Имедашвили

Жители грузинской столицы фотографируются в центре города в солнечный февральский день.

И если отказаться от селфи нет сил, фотографироваться стоит в безопасных местах, либо просить сделать снимок постороннего человека.

И помните, что фотография — это не просто снимок, на котором кто-то прекрасно или не очень выглядит, а конкретная эмоция, чувство отражающее состояние человека на определенный момент.

Фотографируя друг друга и окружающий мир, мы способны ощутить радость, вдохновенье и творческое отношение к жизни.

"Остановись, мгновение, ты прекрасно!"

Материал подготовлен на основе открытых источников.

Довольно сложно научиться хорошо фотографировать если не знаешь основ и главных терминов и понятий в фотографии. Поэтому задача данной статьи — дать общее понимание того, что есть фотография, как работает фотоаппарат и познакомиться с основными фотографическими терминами.

Так как на сегодняшний день, пленочная фотография уже стала в основном историей, то речь дальше пойдет про цифровую фотографию. Хотя 90% всей терминологии неизменно, а принципы получения фотографии одни и те же.

Как получается фотография

Термин фотография означает рисование светом. Фактически, фотоаппарат фиксирует свет попадающий через объектив, на матрицу и на основе этого света формируется изображение. Механизм того, как на основе света получается изображение — довольно сложен и на эту тему написано много научных трудов. По большому счету, детальное знание данного процесса не столь необходимо.

Как же происходит формирование изображения?

Проходя через объектив, свет попадает на светочувствительный элемент, который его фиксирует. В цифровых камерах этим элементом является матрица. Матрица изначально закрыта от света шторкой (затвор фотоаппарата), которая при нажатии кнопки спуска убирается на определенное время (выдержка), позволяя свету в течении этого времени воздействовать на матрицу.

Результат, то есть сама фотография, напрямую зависит от количества света, попавшего на матрицу.

Фотография — это фиксация света на матрице фотоаппарата

Типы цифровых фотоаппаратов

По большому счету можно выделить 2 основных типа фотокамер.

Зеркальные (DSLR) и без зеркальные. Основная разница между ними в том, что в зеркальном фотоаппарате, через установленное в корпусе зеркало, вы видите в видоискателе изображение непосредственно через объектив.
То есть «что вижу — то снимаю».

В современных без зеркальных для этого используются 2 приема

  • Видоискатель оптический и расположен в стороне от объектива. При съемке надо делать небольшую поправку на смещение видоискателя относительно объектива. Обычно используется на «мыльницах»
  • Электронный видоискатель. Самый простой пример — передача изображения прямо на дисплей фотокамеры. Обычно используется на мыльницах, но в зеркальных камерах этот режим часто используется вместе с оптическим и называется Live View.

Как работает фотоаппарат

Рассмотрим работу зеркальной камеры, как наиболее популярного варианта, для тех кто действительно хочет чего то добиться в фотографии.

Зеркальная камера состоит из корпуса (обычно — «тушка»,»боди» — от английского body) и объектива («стекло», «линза»).

Внутри корпуса цифровой камеры стоит матрица, которая фиксирует изображение.

Обратите внимание на схему выше. Когда вы смотрите в видоискатель, свет проходит через объектив, отражается от зеркала,затем преломляется в призме и попадает в видоискатель. Таким образом вы видите через объектив то, что будете снимать. В момент, когда вы нажимаете спуск, зеркало поднимается, открывается затвор, свет попадает на матрицу и фиксируется. Таким образом получается фотография.

Теперь перейдем к основным терминам.

Пиксель и мегапиксель

Начнем с термина «новой цифровой эры». Он относится скорее к компьютерной области, чем к фото, но тем не менее важен.

Любое цифровое изображение создается из маленьких точек, которые называются пикселями. В цифровой фотографии — количество пикселей на снимке ровняется количеству пикселей на матрице камеры. Собственно матрица и состоит из пикселей.

Если вы многократно увеличите любой цифровой снимок, то заметите что изображение состоит из маленьких квадратиков — это и есть пиксели.

Мегапиксель — это 1 миллион пикселей. Соответственно, чем больше мегапикселей в матрице фотоаппарата, тем из большего числа пикселей состоит изображение.

Если сильно увеличить фото — можно увидеть пиксели

Что дает большое количество пикселей? Все просто. Представьте что вы рисуете картину не штрихами, а ставя точки. Сможете ли вы нарисовать круг, если у вас есть всего 10 точек? Возможно получится это сделать, но скорее всего круг будет «угловатым». Чем больше точек, тем более детальным и точным получится изображение.

Но тут кроется два подвоха, успешно эксплуатируемые маркетологами. Во первых — одних лишь мегапикселей мало для получения качественных снимков, для этого еще нужен качественный объектив. Во вторых — большое количество мегапикселей важно для печати фотографий в большом размере. Например для постера во всю стену. При просмотре снимка на экране монитора, особенно уменьшенного под размер экрана — разницы между 3 или 10 мегапикселями вы не увидите по простой причине.

В экран монитора обычно влезает намного меньше пикселей, чем содержится в вашем снимке. То есть на экране, при сжатии фотографии до размеров экрана и менее, вы теряете бОльшую часть своих «мегапикселей». И 10 мегапиксельный снимок превратится в 1мегапиксельный.

Затвор и выдержка

Затвор — это то, что закрывает матрицу фотоаппарата от света, пока вы не нажали на кнопку спуска.

Выдержка — это то время, на которое открывается затвор и приподнимается зеркало. Чем меньше выдержка — тем меньше света попадет на матрицу. Чем больше время выдержки — тем больше света.

В яркий солнечный день, чтобы на матрицу попало достаточное количество света, вам потребуется очень короткая выдержка — например, всего лишь 1/1000 секунды. Ночью, чтобы получить достаточное количество света, может потребоваться выдержка в несколько секунд и даже минут.

Выдержка определяется в долях секунды или в секундах. Например 1/60сек.

Диафрагма

Диафрагма это многолепестковая перегородка находящаяся внутри объектива. Она может быть полностью открыта или закрыта настолько, что остается всего лишь маленькое отверстие для света.

Диафрагма так же служит для ограничения количества света попадающего в итоге на матрицу объектива. То есть выдержка и диафрагма выполняют одну задачу — регулирование потока света попадающего на матрицу. Зачем же использовать именно два элемента?

Строго говоря, диафрагма не является обязательным элементом. Например в дешевых мыльницах и камерах мобильных устройств она отсутствует как класс. Но диафрагма крайне важна для достижения определенных эффектов связанных с глубиной резкости, о которой речь пойдет далее.

Диафрагма обозначается буквой f за которой через дробь стоит число диафрагмы, например, f/2.8. Чем меньше число, тем больше раскрыты лепестки и шире отверстие.

Светочувствительность ISO

Грубо говоря это чувствительность матрицы к свету. Чем выше ISO тем матрица восприимчивее к свету. Например, для того чтобы получить хороший снимок при ISO 100 вам потребуется определенное количество света. Но если света мало, вы можете поставить ISO 1600, матрица станет более чувствительной и хорошего результата вам потребуется в несколько раз меньше света.

Казалось бы в чем проблема? Зачем делать разное ISO если можно сделать максимальное? Причин несколько. Во первых — если света очень много. Например, зимой в яркий солнечный день, когда кругом один снег, у нас встанет задача ограничить колоссальное количество света и большое ISO будет только мешать. Во вторых (и это главная причина) — появление «цифрового шума».

Шум это бич цифровой матрицы, который проявляется в появлении «зернистости» на фотографии. Чем выше ISO тем больше шума, тем хуже качество фото.

Поэтому количество шума на высоких ISO один из важнейших показателей качества матрицы и предмет постоянного совершенствования.

В принципе, показатели шума на высоких ISO у современных зеркалок, особенно топового класса находятся на довольно хорошем уровне, но до идеала еще далеко.

Из за технологических особенностей, количество шума зависит от реальных, физических размеров матрицы и размеров пикселей матрицы. Чем меньше матрица и чем больше мегапикселей — тем выше шумы.

Поэтому «кропнутые» матрицы фотокамер мобильных устройств и компактных «мыльниц» всегда будут шуметь намного больше чем у профессиональных зеркалок.

Экспозиция и экспопара

Познакомившись с понятиями — выдержка, диафрагма и чувствительность, перейдем к самому главному.

Экспозиция является ключевым понятием в фотографии. Не понимая что такое экспозиция — вы вряд ли научитесь хорошо фотографировать.

Формально экспозиция - это величина засветки светочувствительного сенсора. Грубо говоря — количество света попавшего на матрицу.

От этого будет зависеть ваш снимок:

  • Если он получился слишком светлый — то изображение переэкпонированное, на матрицу попало слишком много света и вы «засветили» кадр.
  • Если снимок слишком темный — изображение недоэкспонированное, нужно чтобы на матрицу попало больше света.
  • Не слишком светлый, не слишком темный — значит экспозиция выбрана правильно.

Слева направо — переэкпонированный снимок, недоэкспонированный и правильно экспонированный

Экспозиция формируется подбором комбинации выдержки и диафрагмы, которая еще называется «экспопара». Задача фотографа, подобрать комбинацию так, чтобы обеспечить необходимое количество света для создания изображения на матрице.

При этом надо учитывать чувствительность матрицы — чем выше ISO, тем меньше должна быть экспозиция.

Точка фокусировки

Точка фокусировки или просто фокус — это та точка, на которую вы «навели резкость». Сфокусировать объектив на предмете, значит таким образом подобрать фокусировку, чтобы этот предмет получился максимально резким.

В современных камерах обычно используется автофокус, сложная система позволяющая автоматически фокусироваться на выбранной точке. Но принцип работы автофокуса зависит от множества параметров, например от освещенности. При плохом освещении автофокус может промахиваться или вообще окажется неспособен выполнить свою задачу. Тогда придется переключиться на ручную фокусировки и надеяться на свой собственный глаз.

Фокусировка по глазам

Точку, на которой будет фокусироваться автофокус — видно в видоискателе. Обычно это маленькая красная точка. Изначально она стоит по центру, но на зеркальных камерах вы можете выбрать другую точку для лучшей компоновки кадра.

Фокусное расстояние

Фокусное расстояние — это одна из характеристик объектива. Формально эта характеристика показывает расстояние от оптического центра объектива до матрицы, где образуется резкое изображение объекта. Фокусное расстояние измеряется в миллиметрах.

Важнее физическое определение фокусного расстояния, а в чем практический эффект. Тут все просто. Чем больше фокусное расстояние, тем сильнее объектив «приближает» объект. И тем меньше «угол зрения» объектива.

  • Объективы с небольшим фокусным расстоянием называют широкоугольными («ширики») — они ничего не «приближают» но зато захватывают большой угол зрения.
  • Объективы с большим фокусным расстоянием — называют длиннофокусными, или телеобъективами («телевик»).
  • называют «фиксами». А если вы можете менять фокусное расстояние, то это «объектив с трансфокатором», а проще говоря — зум объектив.

Процесс зуммирования — это процесс изменения фокусного расстояния объектива.

Глубина резкости или ГРИП

Еще одним важным понятием в фотографии является ГРИП — глубина резко изображаемого пространства. Это та зона за точкой фокусировки и перед ней, в пределах которой объекты в кадре выглядят резкими.

При небольшой глубине резкости — предметы будут размыты уже в нескольких сантиметрах или даже миллиметрах от точки фокусировки.
При большой глубине резкости — резкими могут быть предметы на расстоянии десятков и сотен метров от точки фокусировки.

Глубина резкости зависит от значения диафрагмы, фокусного расстояния и расстояния до точки фокусировки.

Подробнее про то, от чего зависит глубина резкости можно прочитать в статье « »

Светосила

Светосила — это пропускная способность объектива. Другими словами — это максимальное количество света, которое объектив способен пропустить к матрице. Чем больше светосила, тем лучше и тем дороже объектив.

Светосила зависит от трех составляющих — минимально возможной диафрагмы, фокусного расстояния, а так же от качества самой оптики и оптической схемы объектива. Собственно качество оптики и оптическая схема как раз и влияют на цену.

Не будем углубляться в физику. Можно сказать что светосила объектива выражается отношением максимально открытой диафрагмой к фокусному расстоянию. Обычно именно светосилу производители указывают на объективах в виде числа 1:1.2, 1:1.4, 1:1.8, 1:2.8, 1:5.6 и т.п.

Чем больше соотношение, тем больше светосила. Соответственно, в данном случае, самым светосильным будет объектив 1:1.2

Carl Zeiss Planar 50мм f/0.7 — один из самых светосильных объективов в мире

К выбору объектива по светосиле надо относиться разумно. Так как светосила зависит от диафрагмы, то светосильный объектив на минимальной диафрагме будет иметь очень небольшую глубину резкости. Поэтому есть шанс, что вы никогда не воспользуетесь f/1.2, так как просто не сможете толком сфокусироваться.

Динамический диапазон

Понятие динамического диапазона так же очень важно, хотя вслух звучит не очень часто. Динамический диапазон — это способность матрицы, передать без потерь одновременно яркие и темные участки изображения.

Вы наверняка замечали, что если попытаться снять окно находясь в центре комнаты, то на снимке получится два варианта:

  • Хорошо получится стена, на которой расположено окно, а само окно будет просто белым пятном
  • Хорошо будет виден вид из окна, но стена вокруг окна превратится в черное пятно

Это происходит из за очень большого динамического диапазона подобной сцены. Разница в яркости внутри комнаты и за окном, слишком большая, чтобы цифровой фотоаппарат смог ее воспринять целиком.

Другой пример большого динамического диапазона — пейзаж. Если небо яркое, а низ достаточно темный, то или небо на снимке будет белым или низ черным.

Типичный пример сцены с большим динамическим диапазоном

Мы видим все нормально, потому что динамический диапазон воспринимаемый человеческим глазом намного шире чем тот, что воспринимают матрицы фотоаппаратов.

Брекетинг и экспокоррекция

В экспозицией связано еще понятие — брекетинг. Брекетинг, это последовательная съемка нескольких кадров с разной экспозицией.

Обычно используется так называемый автоматический брекетинг. Вы задаете камере количество кадров и смещение экспозиции в ступенях (стопы).

Чаще всего используется три кадра. Допустим мы хотим сделать 3 кадра во смещением в 0.3 стопа (EV). В этом случае камера сначала сделает один кадр с заданным значением экспозиции, затем с экспозицией смещенной на -0.3 стопа и кадр со смещением на +0.3 стопа.

В итоге вы получите три кадра — недоэкспонированный, переэкспонированный и нормально экспонированный.

Брекетинг может использоваться для более точного подбора параметров экспозиции. Например вы не уверены в том, что выбрали правильную экспозицию, снимаете серию с брекетингом, смотрите на результат и понимаете в какую сторону надо изменить экспозицию, в большую или меньшую.

Пример снимка с экспокоррекцией на -2EV и +2EV

После чего можно воспользоваться экспокоррекцией. То есть вы точно так же устанавливаете на камере — сделать кадр с экспокоррекцией +0.3 стопа и нажимаете на спуск.

Камера берет текущее значение экспозиции, добавляет к ней 0.3 стопа и делает кадр.

Экспокорекция бывает очень удобна для быстрой подстройки, когда вам некогда думать над тем, что нужно изменить — выдержку, диафрагму или чувствительность чтобы получить правильную экспозицию и сделать снимок светлее или темнее.

Кроп фактор и полнокадровая матрица

Это понятие пришло в жизнь вместе с цифровой фотографией.

Полнокадровым принято считать физический размер матрицы, равный размеру 35мм кадра на пленке. Ввиду стремления к компактности и стоимости изготовления матрицы, в мобильных устройствах, мыльницах и не профессиональных зеркалках устанавливают «кропированные» матрицы, то есть уменьшенные в размерах относительно полнокадровой.

Исходя из этого, полнокадровая матрица имеет кроп фактор равный 1. Чем больше кроп фактор — тем меньше площадь матрицы относительно полного кадра. Например при кроп факторе 2 — матрица будет в два раза меньше.

Объектив предназначенный для полного кадра, на кропнутой матрице захватит только часть изображения

В чем недостаток кропнутой матрицы? Во первых — чем меньше размер матрицы — тем выше шум. Во вторых 90% объективов, произведенных за десятилетия существования фото, расчитаны на размер полного кадра. Таким образом, объектив «передает» изображение в расчете на полный размер кадра, но маленькая кропнутая матрица воспринимает только часть этого изображения.

Баланс белого

Еще одна характеристика, появившаяся с приходом цифровой фотографии. Баланс белого — это подстройка цветов снимка для получения естественных оттенков. При этом отправной точкой служит чистый белый цвет.

При правильном балансе белого — белый цвет на фото (например бумага) выглядит действительно белым, а не синеватым или желтоватым.

Баланс белого зависит от типа источника света. Для солнца он один, для пасмурной погоды другой, для электрического освещения третий.
Обычно новички снимают на автоматическом балансе белого. Это удобно, так как камера сама выбирает нужное значение.

Но к сожалению, автоматика далеко не всегда так умна. Поэтому профи часто выставляют баланс белого вручную, используя для этого лист белой бумаги или другой предмет, имеющий белый цвет или максимально близкий к нему оттенок.

Другим способом является коррекция баланса белого на компьютере, уже после того как снимок сделан. Но для этого крайне желательно снимать в RAW

RAW и JPEG

Цифровая фотография это компьютерный файл с набором данных из которых формируется изображение. Самый распространенный формат файла для показа цифровых фотографий — JPEG.

Проблема в том, что JPEG — это так называемый формат сжатия с потерями.

Допустим у нас есть красивое закатное небо, в котором тысяча полутонов самых разных мастей. Если мы попытаемся сохранить все многообразие оттенков, размер файла будет просто огромен.

Поэтому JPEG при сохранении выкидывает «лишние» оттенки. Грубо говоря если в кадре есть синий цвет, чуть более синий и чуть менее синий, то JPEG оставит только один из них. Чем сильнее «сжат» Jpeg — тем меньше его размер, но тем меньше цветов и деталей изображения он передает.

RAW — это «сырой» набор данных зафиксированный матрицей фотоаппарата. Формально эти данные еще не являются изображением. Это исходное сырье для создания изображения. Благодаря тому, что RAW хранит полный набор данных, у фотографа появляется намного больше возможностей для обработки этого изображения, особенно если требуется какая то «коррекция ошибок» допущенных на стадии съемки.

Фактически при съемке в JPEG, происходит следующее, камера передает «сырые данные» микропроцессору фотоаппарата, он обрабатывает их согласно заложенным в него алгоритмам «чтобы получилось красиво», выкидывает все лишнее с его точки зрения и сохраняет данные в JPEG который вы и видите на компьютере как итоговое изображение.

Все бы хорошо, но если вы захотите что то изменить, может оказаться что нужные вам данные процессор уже выкинул как ненужные. Вот тут то и приходит на помощь RAW. Когда вы снимаете в RAW камера просто отдает вам набор данных, а дальше — делайте с ними что хотите.

Об это часто стукаются лбом новички — начитавшись, что RAW дает лучшее качество. RAW не дает лучшего качества сам по себе — он дает намного больше возможностей получить это лучшее качества в процессе обработки фотографии.

RAW это исходное сырье — JPEG готовый результат

Например загружайте в Lightroom и создавайте свое изображение «вручную».

Популярной практикой является одновременная съемка RAW+Jpeg — когда камера сохраняет и то и другое. JPEG можно использовать для быстрого просмотра материала, а если что не так и требуется серьезная коррекция, то у вас есть исходные данные в виде RAW.

Заключение

Надеюсь эта статья поможет тем, кто только хочет заняться фотографией на более серьезном уровне. Возможно некоторые термины и понятия покажутся вам слишком сложными, но не бойтесь. На самом деле все очень просто.

Если у вас есть пожелания и дополнения к статье — пишите в комментариях

Ньепс приобрел у парижских оптиков братьев Шевалье улучшенную камеру-обскуру, оснащенную мениском Волластона и призмой для поворота изображения. С ее помощью Ньепс получил первые в истории фотографии, расплывчатое, но устойчивое изображение размером 8х6 дюймов. Это были крыши домов и трубы, видимые из окна его кабинета. Снимок был сделан в солнечный день, и экспонирование продолжалось восемь часов. Ньепс применил пластинку на оловянной основе со светочувствительным асфальтовым покрытием, а роль закрепителя исполняли масла.

Тальбот попробовал снимать изображение в камере-обскуре на хлоридно-серебряную бумагу. Он работал с небольшими камерами, оснащенными довольно светосильными линзами, и получил в результате экспозиций продолжительностью несколько минут миниатюрные снимки. Так был получен первый в мире негатив форматом 25х25 мм – это снимок окна его кабинета в Лекок Аббей.

ВВЕДЕНИЕ

Фотография и кинематография настолько вошли в нашу будничную жизнь, что сегодня мы едва осознаем их истинное значение. Их можно без колебаний причислить к величайшим изобретениям человечества, проникшим практически во все сферы его деятельности. Фотография и кинематография стали не только средством документации, развлечения и художественного самовыражения, но и выполняют функцию важных средств познания во многих отраслях науки и техники, поскольку фотографическое изображение позволяет объективно регистрировать, по существу, все оптические явления, включая многие из тех, которые находятся за пределами чувствительности человеческого глаза.

«Фотография» в переводе с греческого языка означает светопись (photos – свет, grapho – пишу), область науки, техники и культуры, охватывающая разработку методов и средств получения сохраняющихся во времени изображений или оптических сигналов на светочувствительных материалах (слоях) путем закрепления изменений, возникающих в светочувствительном слое под действием излучения, испускаемого или отражаемого объектом фотографирования .

В русском языке термин «фотография» определяет три разных понятия: во-первых, собственно фотографический процесс; во-вторых, снимок, полученный этим способом, и, в-третьих, мастерскую (ателье), где производятся такие работы. С другой стороны, этим термином, как правило, обозначают только статический метод проекционной фотографии, тогда как кинематография, в основе которой лежит тот же фотографический процесс, часто и необоснованно противопоставляется статическому методу как независимое техническое средство получения изображений объектов в движении.

Помимо этого, фотографический процесс не всегда имеет задачей воспроизведение копии, представляющей собой подобие объекта, – в ряде областей применения получаемая фотографическая картина имеет специфический вид, выражающий характер взаимодействия потока лучистой энергии со средой или с оптической системой, как, например, это наблюдается в ядерной фотографии или спектрографии.

В настоящее время к обычному классическому методу с использованием солей серебра прибавились многочисленные бессеребряные процессы, которые во много раз расширяют области применения фотографии.

Все это приводит к тому, что современную фотографию следует рассматривать как совокупность разнообразных процессов записи оптической информации.

Классическая серебряная фотография, как статическая, так и кинематография, и развивающиеся бессеребряные процессы, а также еще более обширные практические применения – все это вместе составляет фотографическую науку, которая постоянно опирается на основоположные науки – химию и физику. Само зарождение фотографии происходило независимо от этих наук, и только позднее они существенно помогали и иногда даже направляли ее развитие.

Многие достижения в этой области не только вносят известный вклад в мировую науку, но и привели к созданию разнообразных вспомогательных средств, которые широко используются в науке, технике и народном хозяйстве.

Помимо этого, фотография, особенно в виде художественной кинематографии, представляет собой самостоятельное оригинальное искусство, значение которого для человечества невозможно переоценить .

1.1 Предшественники фотографии

Движущей силой, способствующей изобретению фотографии, было стремление найти такой способ получения изображения, который не требовал бы сравнительно долгого и утомительного труда художника. Ведь в то время как художник за год делал 30 – 50 портретов-миниатюр, фотограф уже в первый период после изобретения фотографии мог за год снять 1000–1200 портретов.

Историки разделяют техническое развитие фотографии на четыре важных периода:

1. Период, предшествующий изобретению фотографии, когда была сконструирована переносная камера-обскура, оснащенная линзой (стеноп), и выполнены основные исследования о воздействии света на соли серебра, в тот период была сформулирована идея запечатлеть постоянное изображение, построенное камерой-обскурой, на соответствующем светочувствительном материале.

2. Вторым периодом развития считают собственно изобретение фотографии и первых фотографических процессов: гелиографии Ньепса (1826 – 1833); дагеротипии Дагера (1837 – 1857) и калотипии Тальбота (1840 – 1857).

3. Третьим периодом развития стало изобретение Арчера в 1851 году, положившее начало эре коллодия, закончившейся в 1880 году.

4. Последним, четвертым этапом развития фотографии, принято считать период ввода бромосеребряных желатиновых эмульсий Мэддокса в 1871 году, усовершенствованных в 1873 – 1878 гг. Бургесом, Кеннетом и Бенетто. Она привела к промышленному производству сухих фотографических пластинок, пленок и бумаги сегодняшних дней.

Обратим внимание на самые значимые даты и имена в развитии фотографии и кинематографии.

В оптике необходимые предпосылки для изобретения фотографии сложились уже несколько веков назад.

Художники эпохи Возрождения для обучения законам перспективы использовали устройство, которое называли КАМЕРА-ОБСКУРА (прибор – предшественник фотоаппарата; в дословном переводе означает «темная комната»).

Время изобретения камеры-обскуры неизвестно. Открытие принципа долго приписывалось Роджеру Бэкону (1214 – 1294). Однако супруги Гернсгейм в своей книге «История фотографии» отмечают, что этот принцип знал уже в середине XI в. арабский ученый Хасан-ибн-Хасан, называемый Ибн-аль-Хайсам и известный в Европе под латинским именем Альгазен (965 – 1038) . Любопытно то, что со времен античности известен способ построения изображения при помощи малого отверстия, выполняющего роль объектива современной фотокамеры.

350 г. д.н.э.

Древнегреческий философ Аристотель в одной из своих работ отметил, что свет, проникающий в темную комнату через небольшое отверстие в ставне, образует на противоположной стене изображение предметов, находящихся на улице перед окном, а ведь именно это и является принципом работы камеры-обскуры.

Свет от объекта попадает на отверстие, заменяющее объектив в камере, и в результате дифракции на этом отверстии меняет направление своего распространения. В результате на некотором расстоянии от отверстия строится перевернутое изображение объекта.

Одно из наиболее ранних описаний камеры-обскуры принадлежит известному итальянскому художнику и ученому Леонардо да Винчи (1452 – 1519 гг.). Некоторые авторы приписывают ему авторство изобретения камеры-обскуры.

Голландский физик и математик Гемм Фризиус наблюдал солнечное затмение при помощи камеры-обскуры, схема которой приведена на рис. 1.


В своей первоначальной форме она представляла собой затемненную комнату с отверстием в стене. Изображения предметов, находящихся вне комнаты, проецировались через отверстие на противоположную стену, и люди, находящиеся в комнате, могли наблюдать эти изображения и переносить их на бумагу (рис. 2).

Венецианец Д. Барбаро впервые дал описание камеры-обскуры с плосковыпуклой линзой, позволяющей увеличить действующее отверстие для проникающих в камеру лучей и усилить яркость оптического изображения, получаемого с его помощью.

Немецкий астрономом И. Кеплер усовершенствовал камеру-обскуру. Он создал ахроматическую оптическую систему, состоящую из вогнутой и выпуклой линз, это позволило увеличить угол поля зрения камеры-обскуры.

Хотя, используя камеру-обскуру изображения можно было фиксировать на бумаге при помощи карандаша, кисти или наблюдать, возникла необходимость в более простом способе регистрации изображения. Постепенно становилось понятно, что основой нового процесса закрепления изображения являются свойства света.

Создана первая компактная камера обскура (рис. 4). Стало возможным направлять камеру-обскуру в любом направлении и выполнять зарисовки с натуры передавая безукоризненную перспективу, свойственную фотографии при этом точно фиксировать детали.

И лишь развитие химии позволило трудами многих изобретателей создать процесс быстрого получения устойчивого во времени изображения, при помощи специального устройства, который мы называем фотография.

Немецкий физик Йоганн Генрих Шульце (1687 – 1744) сделал важнейшее открытие – он доказал, что смешанный с мелом нитрат серебра темнеет под воздействием именно света, а не воздуха или тепла.

Шведский химик Карл Шееле пришел к тем же выводам, ставя опыты с хлоридом серебра. Но Шееле пошел дальше. Он провел исследования по влиянию на соли серебра различных цветов солнечного спектра. При этом им было отмечено, что наибольшей активностью обладают лучи сине-фиолетовой области спектра.

Первая попытка получить изображение с помощью камеры-обскуры была предпринята в Англии Гемфри Дэви и Томасом Веджвудом, которые экспонировали в ней обычную бумагу, пропитанную раствором азотнокислого серебра и хлористого натрия (поваренной соли). На такой бумаге, между волокнами которой в результате пропитки образовывалось хлористое серебро, можно было получить изображение различных фигур. Правда, вскоре эксперименты были прекращены, так как экспонирование длилось часами, а изображение получалось малоконтрастным и при рассмотрении на свету полностью исчезало .

Способ получения при помощи камеры-обскуры устойчивого во времени изображения при химическим воздействием света на специальный материал открыл Жозеф Нисефор Ньепс (1765 – 1833) (рис. 5), второй сын в состоятельной семье королевского нотариуса. Вместе со своим старшим братом Клодом (1763 – 1828) он принимал участие в военной экспедиции на Сардинию в 1793 году, где оба молодых человека договорились решить проблему закрепления изображения в камере-обскуре.

Первые опыты с камерой-обскурой Нисефор Ньепс начал проводить в 1816 году, желая использовать ее в литографии. Он собирался переводить изображения на литографический камень. Камеры различных размеров Ньепс изготавливал сам. Вначале он вкладывал в камеру бумагу, покрытую тонким слоем хлорида серебра. Этот процесс не дал удовлетворительных результатов по двум причинам. Нарисованное светом изображение Ньепс не мог закрепить, а само изображение казалось ему неприменимым, поскольку имело характер негатива. Поэтому для дальнейших опытов он избрал иное, реагирующее на свет вещество - сирийский асфальт, или битум, хорошо знакомый ему по предыдущим литографическим работам. Ньепс знал, что асфальт бледнеет на свету и теряет свою растворимость в керосине. Порошкообразный асфальт он растворял в лавандовом масле. И этим раствором, с помощью тампонов из тонкой кожи натирал различные подложки – стекло, цинковые, медные, серебряные пластинки, литографический камень. Асфальт – вещество, малочувствительное на свет. Поэтому сперва Ньепс экспериментировал с ним без камеры-обскуры. Он покрыл стеклянную пластинку тонким слоем асфальтового раствора, после сушки скопировал на нее путем прямых солнечных лучей гравюру, бумажную подложку которой промаслил, чтобы она была более прозрачной для света. После этого он положил пластинку в блюдце со смесью лавандового масла и керосина, которая растворяла асфальт в местах, защищаемых от воздействия света линиями гравюры. После промывания водой и сушки на пластинке оставалось слегка коричневое негативное изображение гравюры. Должно быть, Ньепс очень удивился, когда при рассмотрении на темном фоне увидел прекрасное позитивное изображение.

Таким способом он изготовил на стекле изображение гравюры, воспроизводящей папу Пия VII. Копию Ньепс показал своему кузену генералу Понсе де Мопа, который был настолько восхищен представшим перед его глазами образом, что распорядился оправить его в раму и демонстрировать при каждом удобном случае друзьям и знакомым. Один из нерасторопных гостей выронил случайно картину из рук, в результате до нас не дошла эта первая гелиография, как назвал Ньепс позже свой процесс .

Ньепс нашел способ размножения гелиографий. Он стал использовать в качестве подложки не стекло, а оловянную или медную пластинку, рисунок же вытравливал достаточно глубоко на местах незащищенных асфальтом. С полученного клише он мог наносить изображения на простую бумагу по известной графической технологии. Сохранился целый ряд таких гелиогравюр Ньепса, являющихся гордостью мировых музеев и коллекций.

Гелиографические снимки не могли передать полную шкалу полутонов, потому что тонкий слой асфальта затвердел после воздействия света по всей глубине до самой подложки, а там, где свет не действовал, полностью вымывался растворителем. Изменение толщины слоя по экспозиции была не возможной. Единственными местами с меняющейся толщиной были контуры изображения, грани между светом и тенью, которые при недостаточно качественных тогда объективах казались нерезкими, размытыми.

Успешно занимаясь гелиогравюрами, Ньепс продолжал экспериментировать с камерой-обскурой. В 1824 году он пишет Клоду, что экспонировал в камере при съемке из окна своего кабинета литографический камень со слоем асфальта и получил почти незаметное изображение, которое при виде наискосок на травленном камне становилось отчетливым, что казалось прямо-таки волшебным.

Ньепс приобрел у парижских оптиков братьев Шевалье улучшенную камеру-обскуру, оснащенную мениском Волластона и призмой для поворота изображения. С ее помощью Ньепс получил первое в истории фотографии, расплывчатое, но устойчивое изображение размером 8х6 дюймов. Это были крыши домов и трубы, видимые из окна его кабинета (рис. 6). Снимок был сделан в солнечный день, и экспонирование продолжалось восемь часов. Ньепс применил пластинку на оловянной основе со светочувствительным асфальтовым покрытием, а роль закрепителя исполняли масла.

Снимок обнаружили в 1952 году в Лондоне и хранится он в коллекции Техасского университета в Аустине как первый фотоснимок природной сцены.

Из-за малой чувствительности и плохой передачи полутонов гелиография Ньепса с камерой-обскурой не смогла найти широкого практического применения.
1.2 Дагеротипия

Примерно в одно время с Ньепсом над получением устойчивого изображения в камере-обскуре начал работать французский художник-оформитель Луи Жак Манде Дагер (1787 – 1851) (рис. 7). Изобретенная им диорама была видом панорамного зрелища, при котором изображение фона крупных размеров, нарисованное с двух сторон прозрачного полотна и дополненное реальным передним планом, освещалось или просвечивалось по продуманному сценарию так, что создавало впечатление перехода от дня к ночи. Зрелище дополнялось тихими звуковыми эффектами. Дагер мастерски владел техникой оформления фона, который своей, говоря современным языком, фотографической точностью производил впечатление реальности. Дагерр использовал в качестве рисовального приспособления камеру-обскуру и проникся идеей получения при ее помощи устойчивых во времени изображений фотохимическим способом.

При одном из посещений оптика Шарля Шевалье (1804 – 1859), который делал камеры-обскуры по его заказу, Дагер, видимо, узнал, что над подобной проблемой работает и Ньепс. Дагер решил написать Ньепсу. В течении почти трех лет они вели переписку.

Ньепс и Дагер заключили договор о совместной работе по усовершенствованию гелиографии. В результате Ньепс передал Дагеру подробности своих опытов. В частности то, что он применял посеребренные медные пластинки в качестве подложек для своих гелиографий и старался очернить парами йода обнаженные места серебряной поверхности, чтобы повысить контрастность и избежать бликов на ее поверхности. Дагеру, наоборот, нечего было предложить своему партнеру, ибо он безуспешно и чисто эмпирически пробовал, изменяются ли разнообразные материалы в результате воздействия света .

После знакомства с опытами Ньепса Дагер сосредоточился на экспериментировании с йодными серебряными медными пластинками и в 1831 году обнаружил, вероятно, случайно, что этот состав положительно реагирует на свет. Йодид серебра чернел после сильного освещения. Дагер обратил на это внимание Ньепса, однако опыты с экспозицией в камере-обскуре не дали ожидаемого эффекта. На йодной пластинке появились неясные очертания изображения лишь после длительной экспозиции, а в результате был получен неудовлетворительный негатив. Оба изобретателя решили оставить этот путь.

После смерти Нисефора Ньепса в 1833 году его место в договоре с Дагером занял сын Нисефора – Исидор. В последующие два года Дагер продолжал опыты с йодом и добился существенного улучшения процесса.

В октябре Дагер в письме сообщал Исидору Ньепсу, что ему удалось повысить скорость воздействия света в шестьдесят раз, однако Дагер не написал, как добился этого. Речь шла о проявлении скрытого изображения с помощью ртутных паров, о котором позже появилась легенда, повествовавшая о возникновении фотографии. Правда, Дагер нигде и никогда даже словом о ней не обмолвился. По этой легенде, в процессе одной из съемок вдруг неожиданно испортилась погода и Дагер положил слабо экспонированную пластинку в шкаф, чтобы потом отполировать ее и использовать для нового снимка. Когда на другой день он вынул ее из шкафа, то обнаружил на поверхности прекрасное изображение. Дагер испытывал это открытие снова и снова до тех пор, пока после постепенного устранения химикатов, оставшихся в шкафу, не убедился, что проявлению изображения способствовали пары небольшого количества ртути, сохранившиеся в открытом блюдце из разбитого термометра.

Дагеру удалось закрепить проявленное изображение с приемлемой устойчивостью в горячем растворе, насыщенном поваренной солью (рис. 8). Тем самым изобретение процесса было закончено.

На медную пластинку наносился тонкий слой серебра, потом эта пластинка споласкивалась разбавленной азотной кислотой и вставлялась в светонепроницаемую камеру, в которой она обрабатывалась парами йода. Таким образом, на медной пластинке создавался слой йодистого серебра. Во время экспонирования в камере-обскуре, сделанной Шевалье и представляющей собой деревянный ящик с установленной ахроматической линзой, на светочувствительном слое в местах которые подвергались воздействию света, происходит фотолиз йодида серебра с образованием микроскопических частиц металлического серебра, не видимых глазом, формирующих скрытое изображение, которое проявлялось тоже в темной камере парами ртути. Частицы серебра взаимодействуют с ртутью с образованием амальгамы серебра, что можно наблюдать визуально. Амальгама серебра создает участки с матовой поверхностью, оптические свойства которой отличаются от зеркальной поверхности серебра. При определенном угле наклона на дагерротипе было четко видно позитивное изображение. Для сохранения этого изображения необходимо было еще провести закрепление с помощью горячего раствора хлористого натрия, т.е. поваренной соли, позднее раствором тиосульфата натрия. В процессе закрепления растворялись несреагировавшие частицы йодистого серебра. В результате такого процесса получалось сразу позитивное изображение, так как на фоне медной пластинки появлялось светлое серебряное изображение. С точки зрения трудоемкости это, несомненно, было выгодно, но, с другой стороны, получался лишь один уникальный оригинал, с которого нельзя было сделать копии.

По желанию изобретателя его назвали дагерротипией, это название было внесено в качестве приложения в договор между Ньепсом и Дагером. Оставалось лишь обнародовать изобретение.

Дагер обратился к выдающемуся французскому ученому, члену Академии наук Франции, депутату парламента Доминику Франсуа Араго и познакомил его со своим изобретением. Араго очень понравились образцы дагерротипии, он сразу понял значение, которое они будут иметь для человечества и науки.

7 января Араго сделал сообщение о новом изобретении на заседании Парижской академии наук. Сущность способа была изложена 19 августа 1839 г. в докладе Араго объединенному собранию Парижской академии наук и Академии изящных искусств.

В докладе Араго рассматривал вопрос использования фотографии . Практическую пользу от новой изобразительной техники Араго, прежде всего, видел в том, что она не требует особого умения: «Если точно придерживаться предписанных правил, каждый может достигнуть таких же результатов, как сам Дагер.» Этим Араго выразил революционную черту фотографии, устраняющую привилегированное положение живописца и способствующую демократизации и механизации изображения.

Особенно тщательно Араго изучал возможности использования открытия Дагера в науке. В связи с сопоставлением дагеротипии и изобразительного искусства он задается вопросом, есть ли от изобретения польза, например, для археологии? «Копирование миллионов иероглифов, которыми исписаны монументы Фив, Мемфиса, Карнака и других мест, длилось бы десятки лет и потребовало бы легионы рисовальщиков. С помощью дагерротипии эту огромную работу мог бы успешно сделать один человек... Если открытие подчиняется законам геометрии, то можно устанавливать точные размеры наивысших частей самых недоступных структур... Достаточно даже беглого взгляда, чтобы ясно увидеть исключительную роль, которую может сыграть фотографический процесс; разумеется, этот процесс предлагает нам экономические выгоды, которые в искусстве только изредка сопряжены с совершенством конечного результата». Вышеприведенные размышления отражают исключительные качества нового изобретения для записи и передачи большого количества информации. Характерно, что Араго разбирает этот вопрос еще в категории искусства. Репродукционная и документальная функция изображения еще не выделилась из области искусства.

Иначе обстоит дело в вопросе использования фотографии для естествоведения. Араго считает фотографию новым инструментом для изучения природы и заявляет, что ее значение для науки не столько в ней самой, сколько в открытиях, связанных с ее использованием. Он это доказывает на примере телескопа и микроскопа: благодаря телескопу астрономы «открывают мириады новых миров» и «явления, превосходящие по своей красоте любые картины, созданные самой богатой фантазией; и микроскоп позволяет производить подобные наблюдения, ибо природа удивительна и многообразна как в методах, так и в своих огромных пространствах». Далее Араго отмечает, как благодаря использованию фотографии в естествознании ускорится развитие данной науки. Он предлагает, например, использовать ее в фотометрии: «При помощи процесса Дагерра физик сможет определить абсолютную силу света путем сравнения его относительного действия». Араго предлагает также изготовить фотокарты Луны, обращает внимание и на возможность применения фотографии в области топографии, метеорологии и т.п. Араго рассматривал фотографию в качестве аналитического инструмента, выявляющего новые аспекты мира. В этом толковании взгляд Араго на фотографию выходит за рамки традиционных художественных концепций и категорий, в которые эту новую и революционную технологию изображения еще долго будут включать.

IX Международный конгресс научной и прикладной фотографии, проходивший в 1935 г., постановил считать 7 января 1839 г. юбилейной датой – днем изобретения фотографии.

Вскоре после обнародования изобретения сгорела диорама Дагера и изобретатель потерял все свое состояние, Араго подумал о том, что изобретение могло бы приобрести французское правительство, опубликовать его и подарить человечеству.

В июне французское правительство купило изобретение Дагера для свободного общественного использования.

Дагер опубликовал статью с описанием изобретения, которая облетела весь мир. В ней читатели нашли инструкцию с изображением камеры и всех приспособлений, а также все подробности отдельных операций, так что каждый мог начать изготавливать по ней дагеротипы.

Первые дагеротипы были сделаны с неподвижных объектов, так как даже при ярком солнечном свете для получения изображения требовалось от 15 до 30 мин. экспозиции.

Благодаря трем усовершенствованиям процесс стал коммерчески пригодным.

1. Изобретение англичанина Джона Фредерика Годдарда (1795 – 1866), позволило повысить светочувствительность дагеротипных пластинок путем обработки смесью паров хлора и брома. Эти усовершенствования позволили довести время экспозиции до значения меньше 1 мин, что дало возможность применять данный метод для портретной съемки.

2. Профессор математики Венского университета Йозеф Максимилиан Пецваль (1807 – 1891) разработал два варианта многолинзовых объективов: пейзажный, который отличался большим полем зрения и портретный с большой светосилой (1:3,6), позволявший увеличить яркость изображения на пластинке в 16 раз по сравнению с ранее используемым простым мениском. Оба варианта объективов по его расчетам изготовил венский оптик Фойгтлендер. Благодаря соединению преимуществ портретного объектива с повышением светочувствительности дагеротипных материалов достигалось сокращение времени, необходимого для экспонирования, до нескольких десятков секунд.

3. Обработанная пластинка тонировалась в пурпурно-коричневый тон хлоридом золота. Кроме изменения цвета такой процесс позволил сделать пластинку существенно более устойчивой к внешней агрессивной среде.

И все же изображение на дагеротипе было чувствительным к механическому воздействию, поэтому его требовалось защищать предохранительным стеклом, которое вкладывали в паспарту из картона или бронзовой жести. Паспарту украшали линии, бордюр, узоры и фамилия фотографа. Все это тщательно заклеивалось от проникновения пыли и вкладывалось в раму. В Соединенных Штатах, где дагеротипический портрет пользовался огромной популярностью, заменявшие раму футляры выпускались массовым производством, имели одинаковый размер и форму, облегчавшие сборку дагеротипа так, что заказчик сразу мог получить свой портрет.

В пятидесятых годах распространилась стереоскопическая дагеротипия. Футляр снабжали складывающимся биноклем (рис. 9).

Изображение дагеротипии невозможно было как-то исправлять, что является причиной ее совершенной достоверности.

Дагеротипы могли отражать мельчайшие подробности объекта и давать прекрасное изображение, но время экспонирования было очень велико, что являлось их большим недостатком. Другим недостатком дагеротипии было то, что для получения нескольких копий необходимо повторное фотографирование, что не всегда представлялось возможным. Однако несколько изобретателей старались найти способ дублирования изображений они вытравливали в глубину дагеротип и печатали с него как с клише графическими методами. К числу таких изобретателей принадлежали во Франции врач Донс, а в Австрии – профессор анатомии венского университета Йозеф Берес.

1.3 Негативно – позитивный процесс

Кроме Дагера, над проблемой получения устойчивого изображения фотохимическим путем в одной лишь Франции, независимо друг от друга, работало примерно двадцать человек. Но наиболее серьезный конкурент находился в Великобритании – Уильям Генри Фокс Тальбот (1800 – 1877) (рис. 10). Его считают третьим изобретателем фотографии.

Тальбот изучал в Кембриджском университете математику, увлекался ботаникой и химией, опубликовал ряд научных статей. В 1831 году был избран членом лондонского Королевского общества. Вскоре стал и членом британского парламента. На поиски фотографии Тальбота побудило стремление делать зарисовки во время зарубежных путешествий, при которых он пользовался камерой-лусидой, представляющей, призму, с помощью которой можно было наблюдать реальную картину, и одновременно следить за постепенным созданием изображения этой картины на рисовальном листе. Однако такая камера позволяла сформировать только виртуальные изображения, которые ему плохо удавались перенести на лист бумаги. Поэтому он приобрел камеру-обскуру и увлекся идеей навечно запечатлеть ее реальные изображения фотохимическим путем.

В июне, возвратившись из поездки в Италию, Тальбот начал производить первые фотографические опыты. Он знал о предыдущих работах Дэви и Веджвуда с нитратом серебра и их неудачах с фиксированием скопированного светом изображения.

Тальбот с самого начала ориентировался на использование светочувствительности солей серебра. Для опытов он применял светочувствительную бумагу, которую изготавливал путем пропитывания раствором хлорида натрия с последующей (после высушивания) обработкой азотнокислым серебром, что приводило к образованию хлорида серебра. Он клал на бумагу листья, целые растения, цветы из гербария, кружева, прижимал их к бумаге стеклом и пружинами, копировал их теневые рисунки на солнце. В результате получал теневые изображения.

Он заметил, что при значительном преобладании хлористого натрия соединения серебра на освещенных местах не чернели. И, наоборот, при преобладании нитрата серебра можно было получить в камере-обскуре видимое негативное изображение при экспонировании на протяжении одного часа. Это привело Тальбота к мысли зафиксировать скопированный теневой рисунок с приемлемой стойкостью концентрированным раствором йодида калия, который изменял неосвещенный хлорид серебра в малочувствительный йодид. Для закрепления изображения Тальбот использовал также раствор хлористого натрия. В качестве третьего способа фиксирования изображения он предложил промывать копию раствором калиевого гексацианоферрата. Наконец, четвертый метод Тальбот перенял от английского астронома Джона Гершеля, который еще в 1819 году открыл растворимость галогенидов серебра в растворе сульфата натрия.

Тальбот попробовал снимать изображение в камере-обскуре на хлоридно-серебряную бумагу. Он работал с небольшими камерами, оснащенными довольно светосильными линзами, и получил в результате экспозиций продолжительностью несколько минут миниатюрные снимки. Так был получен первый в мире негатив форматом 25х25 мм – это снимок окна его кабинета в Лекок Аббей (рис. 11).

Экспонирование в течение часа, необходимое для появления изображения, было еще слишком длительным. Видимо, поэтому Тальбот не спешил подавать заявление о патентировании открытия и сообщать о нем общественности. Очевидно, он хотел это сделать после необходимого усовершенствования, которое сделало бы его открытие пригодным для практического использования. Но когда он узнал, что Дагер объявил 7 января 1839 г. о принципе своего открытия без приведения подробностей, то сразу понял, что речь идет о подобном принципе съемки изображения, поэтому сразу же начал доказывать приоритет своих исследований.

31 января Тальбот передал Королевскому обществу письменное изложение своего изобретения, включая подробное описание всего процесса, которое он опубликовал также в журнале «Атэнум» 9 февраля 1839 г., т. е. раньше, чем появилось детальное изложение процесса дагеротипии . Этот метод он назвал фотогеническим рисунком и изложил его суть на совещании Королевского научного общества. Возражения, что светлые участки предмета на копии темные, а тени белые, Тальбот опровергнул тем, что можно добиться правильного воспроизведения света и тени путем дальнейшего копирования зафиксированного теневого рисунка. Возможность размножения снимков двухступенчатым процессом негатив-позитив является крупнейшим вкладом Тальбота в последующее развитие фотографии.

Таким образом он изобрел фотографический способ размножения копий, названный спечатыванием, который требовал значительного времени экспонирования. После экспонирования бумага промывалась в растворе хлорида натрия или йодида калия, в результате чего оставшийся хлорид серебра становился нечувствительным к действию света. Те участки, которые подвергались действию света, состояли из мельчайших частиц серебра, и были темными.

Английский астроном Джон Гершель, узнав о работе Дагера и Тальбота в январе, сенсибилизировал бумагу солями серебра и после экспонирования фиксировал изображение тиосульфатом натрия. Хотя первоначально полученные Тальботом изображения имели обращенное распределение светотени, но дальнейшее копирование на другую светочувствительную бумагу вновь изменяет распределение светотени. Гершель назвал изображение с обращенным распределением светотени негативом, а изображение, тона которого совпадают с тонами снимаемого объекта, – позитивом. Джон Гершель ввел термин «фотография».

Тальбот продолжал работать над усовершенствованием своего метода, сосредоточившись, прежде всего, на сокращение времени, необходимого для успешного экспонирования.

Это ему удалось после того как он открыл скрытое воздействие света на галогенидосеребряную бумагу и нашел способ ее визуализации. Новый процесс настолько отличался от способа фотогенических рисунков, что Тальбот дал ему название «калотипия», образованное от греческого «калос» – красивый. По предложению друзей Тальбота позже новый процесс стали называть тальботипия.

Новый процесс отличался совершенно иной подготовкой чувствительной бумаги. Вначале на нее наносили кисточкой тонкий слой раствора нитрата серебра, потом оставляли на некоторое время, чтобы раствор пропитал бумажную массу, просушивали поверхность и клали на несколько минут в раствор йодида калия, чтобы мог свернуться в воде нерастворимый йодид серебра. После этого бумагу промывали и сушили в темноте. Она длительное время могла храниться, так как йодид серебра является довольно устойчивым соединением. Непосредственно перед применением йодистая бумага натиралась смесью раствора нитрата и насыщенного раствора галловой кислоты, оставлялась лежать несколько минут, а потом осторожно нагревалась лучистой теплотой открытого огня и еще влажной экспонировалась в камере. Для проявления изображения бумагу нужно было пропитать вышеупомянутым галлонитратным раствором, и при свете свечки можно было наблюдать за появлением изображения (рис. 12). В случае необходимости процесс проявления повторялся. Тальбот вновь и вновь восхищался явлением постепенного роста насыщенности изображения. Проявляющий раствор содержал нитрат серебра. Таким образом, речь шла о так называемом физическом проявлении . Для закрепления изображения на основе исследований Джона Фридриха Вильяма Гершеля (1792 – 1871) начал использоваться тиосульфат натрия. После промывки и сушки получался негатив, который после навощения бумажной основы копировался на позитив. Это делалось следующим образом: в темной лаборатории под негатив вкладывалась незасвеченная светочувствительная бумага, положение негатива и светочувствительной бумаги фиксировалось копировальной рамкой. В таком виде они подвергались солнечному освещению. Позитив проявлялся тем же самым способом, как и негатив. Калотипии получались коричневого цвета, причем на отдельных сохранившихся экземплярах можно обнаружить самые разные оттенки – от фиолетового и красного до желто – коричневого и оливкового.

Тальбот получил патент на изобретение калотипии (тальботипии).

Калотипия никогда не была так популярна, как дагеротипия, что частично объясняется патентами Тальбота, ограничивающими ее применение, а также невозможностью этого метода передавать четкое изображение мелких деталей при портретной фотосъемке по сравнению с дагеротипией. С другой стороны, она представляла возможность получения любого количества копий с одного негатива.

Луи Бланкар-Эрвар, используя метод Тальбота, изобрел новый тип фотобумаги – альбумидную фотобумагу, которая использовалась в качестве типовой до конца столетия. Бумагу покрывали яичным белком с растворенными в нем бромидом и иодидом серебра. Изображение формировалось в результате длительного экспонирования солнечным светом, проходившим через негатив, тонировалось хлоридом золота, фиксировалось, промывалось и сушилось. Эта бумага использовалась в качестве типовой до конца XIX века.

Тальботипия доминировала не только в портретной фотографии. Она применялась также в документации архитектуры и чужеземных стран. В данном жанре ее главная трудность состояла в том, что необходимо было прямо на месте снимка изготовить тальботипическую бумагу, экспонировать ее во влажном состоянии и сразу химически обработать.

Француз Гюстав Ле Гре (1820 – 1862) придумал замену тальботипии на так называемые восковые негативы. Вначале он покрывал бумагу горячим воском для изоляции химического влияния бумажной массы на остальные растворы. После йодирования в специальной ванне и сушки бумаги он сенсибилизировал ее в растворе нитрата серебра и уксусной кислоты. После промывки в дистиллированной воде бумага сушилась и, сохраняемая в темноте, не утрачивала своей чувствительности на протяжении двух недель. После экспозиции не надо было сразу ее проявлять, достаточно было подвергнуть ее обработке в течении двух дней. Это значительно упрощало работу на открытой местности и в пути.

Американцем Д. Вудвордом был изобретен громоздкий фотоувеличитель, названный солнечной камерой. С появлением дуговых ламп фотопечатание можно было осуществлять в темной комнате, но оставалась нерешенной проблема прочности фотобумаги.
1.4 Стеклянные негативы. Прямые позитивные снимки

В развитии фотографии выделялись три независимых друг от друга пути развития. Два из которых, дагеротипия и тальботипия, своими успехами в фотографическом портретировании пропагандировали изобретение настолько удачно, что оно прочно заняло свое место в жизни того времени. Стремление к приобретению доступного по цене собственного портрета было столь велико, что его не могли удовлетворить оба сложных процесса. У дагеротипии мешала это сделать малоподходящая металлическая подложка, не позволявшая размножение портретов копированием. У тальботипии – бумага, прозрачность которой достигалась вощением после проявления снимка или перед нанесением фотографического светочувствительного слоя, которая не была идеальной основой для негатива, так как резкого изображения не получается из-за рассеивания света в бумажной массе при печати. Более того, Тальбот охранял свой процесс патентами, препятствовавшими свободному промышленному его использованию. Вторым общим недостатком была малая светочувствительность съемочных материалов, что затрудняло в особенности портретирование.

Таким образом созрела необходимость поиска третьего пути развития, способного вывести фотографию на более высокий уровень коммерческого успеха.

Для дальнейшего развития фотографии необходимо было использовать прозрачную основу, на которую нанесены светочувствительные соли серебра. Наиболее подходящим материалом является стекло, но необходимо было решить проблему, каким образом закрепить на гладкой поверхности фотографический светочувствительный слой.

Базельский профессор химии Кристиан Фридрих Шенбейн (1799 – 1868) открыл способ производства пироксилина – нитроцеллюлозы. При исследовании свойств этого нового соединения Шенбейн получил раствор, названный коллодий и послуживший в дальнейшем основой для нового открытия.

Клод Феликс Абель Ньепс де Сэн-Виктор (1805 – 1870) – двоюродный брат изобретателя Жозефа Нисефора Ньепса, достиг первых пригодных для практического использования результатов. Он в качестве носителя использовал альбумин. Поверхность стекла сначала натиралась яичным белком с примесью йодистого калия. После осушки на стекле образовывался тонкий сплошной слой. Потом следовало уже известное нанесение светочувствительного слоя погружением в раствор азотнокислого серебра. После экспонирования в фотокамере пластинка проявлялась в галловой кислоте, фиксировалась и промывалась. Получаемые негативы были пригодны для изготовления фотоотпечатков, четко передающие мелкие детали.

Отрицательной стороной нового процесса было сравнительно долгое время, необходимое для экспонирования, – от 6 до 18 минут. Это, видимо, было главной причиной, почему альбуминный процесс не использовался при съемке. И наоборот, его модификация для позитивных материалов, изобретенная Луи-Августом Бланкар-Эвраром (1802 – 1872), имела довольно большой успех и сравнительно долго применялась на практике. Снимки на альбуминной бумаге тоже выходили в коричневых тонах – от цвета слоновой кости до серо-коричневого. Подготовленная этим новым способом бумага использовалась для изготовления копий с калотипных негативов.

На сцену вступает английский фотограф Фредерик Скотт Арчер (1813 – 1857). Он разработал мокрый коллодионный процесс, который не был защищен патентом, что позволило открыть путь мощной волне прибыльности фотографии.

Полный процесс Арчера требовал последовательного проведения семи операций. Вначале нужно было тщательно очистить и отполировать прозрачную стеклянную пластинку, вырезанную согласно формату. Затем пластинку поливали соответствующим количеством вязкого коллодия с примесью йодированной или бромистой соли, до равномерного распределения по всей поверхности. В тусклом оранжевом свете темной комнаты она сенсибилизировалась (если еще была липкой) в течение пяти минут в растворе нитрата серебра, в котором теряла бледножелтый цвет в результате выпадения осадка галогенида серебра. После стекания раствора пластинка в мокром виде вкладывалась в кассету съемочной камеры. Там ее экспонировали. Фотограф возвращался в темную комнату, поливал экспонированную пластинку раствором пирогалловой кислоты или проявителем с сульфатом железа, что приводило к быстрому появлению не очень яркого изображения, затем пластинка промывалась в воде. После этого изображение закрепляли раствором тиосульфата натрия или цианида калия и тщательно промывали в проточной воде. Наконец, пластинку сушили над слабым пламенем спиртовки и еще в горячем состоянии полировали.

Каждый коллодионный негатив нес на себе следы индивидуальной обработки. Вся работа того времени протекала эмпирическим путем опытов и ошибок. При этом снимки, полученные на мокрых коллодионных пластинках, отличались великолепной четкостью и выразительностью оттенков. Для экспонирования изображения требовалось менее 30 секунд. Благодаря этим преимуществам мокрые коллоидные пластинки, с которых можно было получить любое количество копий, начали постепенно вытеснять дагерротипию и калотипию и до конца пятидесятых годов девятнадцатого века мокрые пластинки окончательно вытеснили оба первоначальные процессы.

Существенным недостатком этого метода являлась необходимость осуществления всего процесса за время, пока покрытие не успевало полностью высохнуть, так как, подсохнув, оно становилось практически непроницаемым для обрабатывающих растворов. Вследствие того, что негативы, изготавливались на основе стеклянных пластинок, они были тяжелыми и хрупкими.

Арчер заметил, что изобретенным им методом позитивную запись можно получить сразу из камеры. Достаточно было экспонировать снимок так, чтобы запись самых глубоких теней осталась полностью прозрачной и не имела даже следов вуали. Возникал слабый негатив, который при рассмотрении против черного фона при сильном освещении, падающем на него спереди, инвертировался в красивое позитивное изображение. Таким образом, заменой условий наблюдения, происходила инверсия слабого на просвет негатива в хороший на вид позитив. Черного фона можно было достичь, подложив с оборотной стороны снимка черную бумагу, черный бархат, черную лаковую кожу либо просто покрыв асфальтовым лаком оборотную сторону снимка. Иногда для снимка вместо бесцветного стекла бралось стекло темное.

Катинг запатентовал этот процесс в Америке, а Рут назвал эти прямые позитивы амбротипиями от греческого слова «амбротос» – неизменный или коллодионными позитивами.

Амбротипия требовала, чтобы проявленное серебро изображения было на вид не черным, а сероватым чтобы изображение хорошо контрастировало с черным фоном. Это достигалось небольшим видоизменением проявителя, например, добавлением в него нескольких капель азотной кислоты. Тем самым проявление приобретало преимущественно физический характер, из раствора проявителя серебро на освещенных местах приобретало светлый оттенок.

И все же дагерротипия была более качественным процессом, предоставлявшим более светлое и тонко прорисованное изображение, в то время как амбротипия давала хотя и более контрастное, но темное изображение. Амбротипия пятидесятых годов была удешевленным суррогатом дагерротипии, сильно походила на нее и до сих пор зачастую путается с ней из-за подобного принципа изображения. Распознать их легко по подложке, у дагерротипов это серебряное зеркало, а у амбротипий – черное стекло.

Гамильтон Смит запатентовал свой метод, который в последствии стал известен как тинтайп. В этой модификации прямого позитива Арчера эмульсия наносилась на черную или коричневую эмалированную поверхность металлической пластинки. Французский ученый Адольф Мартин впервые сообщил об этом методе в 1853 г. Фотографии на подложке из металла были известны как мелианотипии и ферротипии.

Ферротипии стали самой дешевой разновидностью коллодионных снимков. Ее можно было вкладывать в фотоальбомы, посылать по почте, поскольку она была легкой, стойкой и небьющейся. Для нее были изготовлены камеры, оснащенные сосудом для оперативной химической обработки, так что заказчик мог получить сухую ферротипию сразу после снимка. С ней работали профессионально на пляжах, праздниках, ежегодных ярмарках и рынках. Ферротипии в значительной мере способствовали падению ремесленной фотографии с точки зрения технического качества и эстетики изображения. Они продержались до первой мировой войны 1914 г..

Коллодионный мокрый процесс сделал фотографию доступной для состоятельных любителей и профессиональных фотографов. Этот способ значительно расширил горизонты фотографии и использовался для художественного отображения различных исторических фактов.
1.5 Негативы с сухим покрытием

Вскоре фотографы и изобретатели стали искать пути совершенствования мокрого коллодионного процесса с переходом к сухим коллодионным пластинкам, которыми можно было бы своевременно запастись и разделить во времени фотосъемку и химикофотографическую обработку. Необходимо было найти вещества, препятствующие закрытию пор при засыхании коллодия, чтобы водные растворы проявителя и закрепителя могли глубоко проникать в светочувствительный слой при химикофотографической обработки пластинки. Пробовались самые разные вещества и их комбинации, например, смола, янтарный лак, белок, желатин, казеин, гуммиарабик, глицерин, мед, сок из малины и изюма, английское пиво, отвары чая и кофе, морфий и опиум и многие другие вещества.

Б. Саус и В. Болтон изобрели сухую коллодионную пластинку, ставшую в 1867 г. коммерчески доступной. На пластинки наносился коллодий, содержащий бромиды аммония и кадмия, а также азотнокислое серебро. Для них не требовалась дополнительная стадия сенсибилизирования. В фотокамере пластинки экспонировались сухими и подвергались обработке в удобное для фотографа время. Однако для этого метода требовалось приблизительно в три раза больше время экспонирования, чем в случае мокрой коллодионной пластинки.

Английский врач Ричард Лич Мэддокс (1816 – 1902) сообщил в журнале British Journal of Photographi о пластинке, аналогичной пластинке Сауса и Болтона. Основным ее отличием было то, что в качестве диспергирующей среды вместо коллодия использовалась желатина. С этого началась четвертая, современная эра развития фототехники.

Он писал о том, что, приготовив водный раствор желатина, добавлял в него кадмиевый бромид после нагревания (чтобы желатин растворился) прибавлял, не переставая помешивать, нитрат серебра. Образовывалась мутная эмульсия, которую он наливал на стекло и оставлял засохнуть в темноте. Тем самым отпадала необходимость в приготовлении обычной сенсибилизирующей ванны.

Саус и Болтон в поисках получения сухих коллодионных пластинок до него пытались осуществить подобный метод используя коллодий вместо желатина. Мэддокс не переносил запах эфира, поэтому он обратился к желатину, не ведая, какое чудесное вещество он ввел в фотографическую эмульсионную технику.

Сам Мэддокс не продолжал совершенствовать свою технику, но за него это сделали другие. В частности удалось определить, что эмульсию можно освободить от оставшихся, растворимых в воде солей промыванием, пока желатин еще сохранял желеобразное состояние.

Мэддокс некоторое время сотрудничал с бельгийским ученым Дезире Ван Монкговеном (1834 – 1882), который первый предложил изготовление бромосеребряной эмульсии в присутствии аммиака.

Соли серебра чувствительны только к синей и фиолетовой областям спектра.

Берлинский химик д-р Г. Фогель обнаружил оптические сенсибилизаторы, которые, будучи добавлены к бромосеребряной эмульсии, делали фотопластинки чувствительными не только сине-фиолетовой области видимого спектра. Это позволило в дальнейшем производить ортохроматические пластинки, чувствительные к желтому и зеленому цвету, а еще позже – панхроматические, чувствительные к красному цвету.

Англичане Барджесс и Кинг выпустили на рынок эмульсию для сухих пластинок. Она выпускалась в виде желе. Фотографу нужно было расплавить ее нагреванием и самому нанести на пластинки.

Дж. Джонстон и У. Б. Болтон приступили к фабричному изготовлению бромосеребряной желатиновой эмульсии. Пластинки с нанесенной эмульсией стали выпускаться в продажу «Компанией сухих пластинок» в Ливерпуле.

П. Маудслей в Англии сообщил о создании желатиновой фотобумаги, содержащей бромид серебра.

Во Франции начали изготавливать первые оптически синсибилизированные коммерческие пластинки.

Одно из первых систематических исследований фотографического процесса было начато в Англии В. Дриффильдом и Ф. Хартером. Они изучали соотношение между образующимися в проявленной пленке количеством серебра и временем ее экспонирования. Результаты этих исследований были опубликованы в 1890 г. Эта область исследований называется сенситометрией, а кривая, описывающая зависимость между оптической плотностью почернения пленки и логарифмом экспозиции, – характеристической кривой Хартера и Дриффильда в честь первооткрывателей.

Предложена эмульсия в форме промытых, высушенных листов, продававшихся в связке, которую достаточно было намочить, растворить в тепле и полить эмульсией стеклянные пластинки.

Чарльз Е. Беннет открыл процесс созревания бромосеребряной эмульсии в нейтральной среде (выдерживанием ее при температуре 32°С), благодаря чему достигалось значительное повышение светочувствительности. Они успешно использовались для времени экспонирования порядка 0,1 с и стали называться сухими желатиновыми пластинками.

Фотографическая эмульсионная техника стала в восьмидесятых годах основой мануфактурного, а позже промышленного производства фотографических материалов, пластинок. Так Тайфер и Антуан Люмьер (художник-рисовальщик и фотограф из Лиона, отец Огюста и Луи Люмьеров) начали производство на промышленном уровне ортохроматических и изохроматических фотопластинок с повышенной чувствительностью к свету. Для них уже применялась эмульсия, рожденная эпохой индустриальной фотографии.

Дж. Сван организовал промышленное производство галогеносеребряной фотобумаги на основе желатина. Желатина стала основой всех фотобумаг, которая заменила альбуминную фотобумагу, и до сих пор используется в промышленном производстве.

К этому времени был разработан и использован ряд управляемых процессов при изготовлении фотоотпечатков, человек, занимающийся фотопечатанием, мог корректировать градации тонов, контрастность и тональность фотоотпечатков.

Монкговен основал фотохимическое предприятие европейского масштаба при значительном производстве сухих желатиновых пластинок. Он расходовал 10 тысяч килограммов стекла в неделю и выпускал четыре с половиной миллиона пластинок ежегодно .

Тем самым фотограф был полностью освобожден от трудностей подготовки своими руками фотографических материалов.

Забота об их дальнейшем развитии легла на плечи технологов новой фотохимической промышленности. Вскоре выяснилось, насколько не надежен выпуск по опробованным на первый взгляд рецептам. Оказалось, что решающее влияние на издержки производственного процесса оказывал желатин, причем своими не известными до тех пор качествами.

Большую проницательность показал один американский банковский служащий Джордж Истмен (1854 – 1932). В свои молодые годы он пересек Атлантический океан, чтобы узнать в Англии секрет изготовления сухих пластинок. По возвращении он организовал скромное предприятие «Истмен Компания сухих пластинок», которое впоследствии стало гигантской фирмой, известной под названием «Kodak».

Австрийский химик Д. Эдер открыл оптический сенсибилизатор для зеленой области спектра – эритрозин.

В Вене фирма «Лоури и Пленер» стала выпускать пластинки с оптическими сенсибилизаторами, названные ортохроматическими. Это название используется в настоящее время для фотоматериалов, чувствительных ко всему видимому спектру, за исключением красной области.

Австрийский химик Б. Гомолка, работавший в Германии, открыл красный сенсибилизирующий краситель – пианоцианол.

Реттен и Вайнрейт в Англии использовали этот краситель совместно с усовершенствованным зеленым сенсибилизатором для изготовления пластинок, названных панхроматическими. Этот термин используется теперь для фотоматериалов, чувствительным ко всем областям видимого спектра.

Брак производства преследовал Истмена настолько, что он основал на своем заводе хорошо оборудованную научноисследовательскую лабораторию. В ней профессиональные научные коллективы решали основные технологические проблемы производства.

Самюэлю Шеппарду, работавшему в лаборатории «Kodak» и его сотрудникам удалось найти примеси органических соединений серы, входящих в состав желатина, которые превращали его в высокоактивный элемент, влияющий на чувствительность, градацию и остальные полезные фотографические свойства эмульсии.
1.6 Портативная и скоростная фотография, кинематограф

Русский фотограф Левицкий внес принципиальное изменение в конструкцию фотоаппарата, снабдив его мехом, что позволило значительно сократить его габариты и вес.

Т. Скайф сконструировал миниатюрную камеру, имеющую значительную светосилу, которую можно считать портативной.

Первые фотографии, полученные Тальботом, были сделаны на фотопластинках площадью 6,45 см.кв. Однако его камеру нельзя назвать моментальной, так как требовалось длительное время экспозиции. Напомним: выдержка при съемке у Ньепса (1826 г.) равнялась 8 часам, у Дагерра (1837 г.) – 30 минутам, у Тальбота (1841 г.) – 3 минутам, при мокроколлодионном способе (1851 г.) – 10 секундам.

Появление желатиновых эмульсий привело к снижению длительности экспозиции до 1/200 секунды, а это толкало изобретателей к совершенствованию фотографической техники, поиску новых способов отработки коротких выдержек. Именно повышение светочувствительности эмульсии привело к созданию нового направления в фотографии – скоростной фотосъемке, которое со временем переросло в кинематограф.

Э. Сонштадт выпустил магниевую проволоку, горение которой использовалось в фотографии для освещения. Несмотря на то, что время экспонирования было еще около 1 мин, горящую магниевую проволоку можно рассматривать как первый переносной источник света в фотографии. Однако в процессе горения магния возникало плотное облако белого дыма.

Английским фотографом Эдвардом Джеймсом Майбриджем, который в 1850 году осел в Соединенных Штатах, сконструирован один из первых затворов для фотокамер. Затвор использовался им для фотографирования скачущих лошадей; при этом требовалось, чтобы затвор срабатывал быстрее, чем за 1/1000 с. Майбридж изобрел свою систему съемки (рис. 13). Параллельно движущемуся объекту он расставлял в ряд несколько фотоаппаратов с электромагнитными затворами. От каждого затвора на пути объекта была протянута нить. Предположим, Майбридж фотографировал всадника. Конь задевал ногами одну за другой нити. Каждый раз срабатывал очередной фотоаппарат. Получались снимки последовательных фаз движения. Так, еще до изобретения кинематографа светопись раскрыла механику движения человека и животных. Кинематограф впоследствии подтвердил свидетельство фотографии .

Существует легенда, что к фотографированию движения Майбриджа привело, пари между двумя богатыми американцами, поспорившими, касается ли лошадь при галопе земли в определенный момент или нет. с тех пор Майбридж изо всех сил пытался запечатлеть именно это мгновение.

Занимаясь изучением движения, Майбридж изобрел первый проекционный аппарат, который он назвал зоопраксископом. В конструкции использовалась стеклянная катушка, на которой были намотаны картинки различных фаз движения на прозрачной основе. Он и тут использовал любимую тему – лошадь в галопе.

В России поручик Измайлов создал фотоаппарат, рассчитанный на быструю смену фотопластинок. Аппарат имел револьверный барабан в сочетании с системой магазинного ружья. В магазине помещалось до 70 пластинок.

Опубликованные Майбриджем серии фотографий движущейся лошади, принесли ему мировую известность, и привели к многолетнему сотрудничеству с Этьенн Жюль Марейем, который к этому времени серьезно занимался изучением движения человека, животных и птиц. Он официально считающегося автором первых фотографий, которые фиксируют отдельные фазы движения через короткие интервалы реального времени (несмотря на то, что идея Измайлова предвосхитила замысел Марея). Марей предложил название хронофотография. Это название и по сей день служит для обозначения целой специализироваТальбот продолжал работать над усовершенствованием своего метода, сосредоточившись, прежде всего, на сокращение времени, необходимого для успешного экспонирования.435нной области в фотографии.

Русский фотограф из Витебска С. Юрковский создал первый в мире «моментальный затвор» (рис. 14). Чертежи и подробное описание этого оригинального устройства опубликовал петербургский журнал «Фотограф».

На Всероссийской промышленно-художественной выставке в Москве с большим успехом демонстрировалась «гибкая смоловидная пластина, по своей плотности и прозрачности соответствующая стеклу», разработанная петербургским фотографом И. Болдыревым. Газета «Всероссийская выставка» рассказала, что пластина Болдырева «эластична настолько, что ни свертывание в трубку, ни сжимание в комок не могут заставить ее искривиться или поломаться. Одинаково мало подвержена порче от жары, холода и воды. Остается такой же прозрачной и эластичной» . Но это открытие нашего соотечественника осталось в то время незамеченным, хотя и вело к революционным изменениям в фототехнике.

Марей продемонстрировал фоторужье (рис. 15) для последовательной съемки фаз быстрого движения – предшественника киноаппарата. Фотографическое ружье является самым ранним хронофотографическим прибором Марея. Его конструкцию он задумал еще до знакомства с фотографиями Майбриджа, как это явствует из его письма главному редактору журнала «La Nature» от 26 сентября 1878 года .

Ружье было предназначено прежде всего для изучения птичьего полета. Серийные снимки полета чаек, которые Марей сделал в Неаполе, он продемонстрировал в Академии наук 27 марта 1882 года. Одновременно он демонстрировал и синтез движения с помощью фенакистископа (вид стробоскопического диска), в который он поместил полученные снимки.

На рис. 16 представлена конструкция фотографического ружья, подробно описанного в журнале «La Nature» от 22 апреля 1882 года. 1 – общий вид. В стволе помещен объектив, в затворе – часовой механизм, приводящий в движение ротационный секторный затвор и шаговый механизм поворота зажима с фотографической пластинкой. 2 – открытый зажим фотографической пластинки с шаговым механизмом. 3 – кассета, позволяющая менять пластинки при дневном освещении.

Сначала съемка велась на круглую вращающуюся пластинку, потом – на неподвижную пластинку через вращающийся обтюратор с тремя прорезями. В 1883 году он научился получать на одной пластинке десять-двенадцать фаз быстрого движения, «совершенно не сливающихся между собой». А еще через несколько лет создал хронофотограф, в котором вместо пластинки использовалась «гибкая лента светочувствительной бумаги» (прототип кинопленки).

Фотографическое ружье Марея имеет все основные признаки кинематографического прибора – съемка выполняется единственным объективом на чувствительный материал, который передвигается посредством прерванного движения и в момент экспонирования находится в состояние покоя, в то время, как при транспорте закрыт вращающимся затвором. Осуществление идеи Марея от 1878 года было обусловлено также и тем, что в то время уже существовали сухие пластинки из желатина, которые благодаря своей чувствительности и легкому манипулированию поддержали успех конструкции Марея. Использованная фотопластинка, разумеется, ограничивала возможности прибора. Ее инерция, обусловленная сравнительно большой массой, ограничивала частоту изображения до 12 снимков в секунду. Более того, это были очень маленькие изображения, что при том качестве чувствительных эмульсий вызывало затруднения при анализе снимков. Увеличение формата вело бы опять же к увеличению инерционных масс и снижению частоты.

Юрковский опубликовал описание моментального затвора – «затвора при негативной пластинке» более совершенной конструкции, чем предложенный им в 1882 г. Он разработал «шторно-щелевой отсекатель света», принцип которого сохраняется в аппаратостроении до наших дней. К сожалению, затвор Юрковского не получил распространения.

Г. Кеньон предложил воспламеняемую смесь порошкообразного магния и хлорида калия, при горении которой возникает очень яркий свет в течение короткого промежутка времени. Эта смесь использовалась как переносной источник света и известна как магниевая вспышка. Однако дым оставался проблемой при фотосъемке.

Джордж Истмен получил патент на новую систему фотографирования, в которой использовались роликовая фотопленка на бумажной подложке и кассета, разработанная Д. Истменом и В. Уолкером. Кассета заряжалась пленкой в темном помещении и прикреплялась к фотоаппарату, сконструированному для съемки на фотопластинки, в виде дополнительной приставки.

Г. Гудвин подал заявку на патент на способ изготовления прозрачной гибкой целлулоидной пленки. Подложка изготавливалась путем полива раствора нитрата целлюлозы на гладкой поверхности (например, на стекле). В дальнейшем это изобретение дало мощный толчок для развития портативной фотографии и кинематографии.

Д. Карбут из Филадельфии изготовил пленку с гибкой прозрачной подложкой путем нанесения желатиновой эмульсии на тонкие целлулоидные полосы. Такая подложка была слишком толстой, чтобы быть гибкой. Требовались достаточно гибкая подложка и роликовый держатель для пленки (кассета).

Истмен запатентовал портативную фотокамеру, в которую помещалась кассета с роликовой фотопленкой. Вначале использовалась фотопленка на бумажной подложке с отделяемым фотослоем. После обработки эмульсия с трудом отделялась от бумажной основы, закреплялась и использовалась для получения позитивных фотоотпечатков.

Майбридж пытался озвучить пленку, используемую в зоопраксископе, с этой целью он сотрудничал с Эдисоном. Оба хотели объединить зоопраксископ с фонограммой Эдисона, но работа не была окончена главным образом потому, что бурная светская жизнь Майбриджа занимала у него много времени .

На конструкцию затвора, аналогичную конструкции Юрковского, немецкий фотограф из Познани О. Аншютц получил патент, и с конца 80-х годов камеры с такими затворами стали регулярно выпускаться крупнейшими фирмами европейских стран.

Майор артиллерии французской армии О. Ле Пренс в хронофотографе своей конструкции воспользовался гибкой лентой из целлулоида .

Компания «Истмен кодак» наладила производство прозрачной гибкой пленки с подложкой из нитрата целлюлозы. Эта пленка была разработана Д. Истменом и Г. Рейхенбеком и изготавливалась почти таким же способом, что и в патенте Гудвина.

Начат промышленный выпуск кинопленок.

В Париже братья Люмьер открыли кинотеатр, названный ими синематограф. Это событие стало первым коммерческим мероприятием в области кинематографии.

1 ноября 1879 г. в небольшой деревушке Линов недалеко от Берлина родился Оскар Барнак (рис. 15), внесший огромный вклад в развитие фототехники.

В 1911 году он возглавил исследовательскую лабораторию фирмы «Лейтц». В обязанности Барнака, в частности, входило испытание кинематографических методов съемки.

Барнак сконструировал свою, цельнометаллическую кинокамеру из алюминия, которая была более легкой и удобной в сравнении с используемыми в то время.

Основной трудностью процесса киносъемки было правильное определение экспозиции .

Чтобы облегчить определение экспозиции при киносъемке, Барнак сконструировал оригинальный экспонометр в виде небольшого аппарата, в котором для определения экспозиции использовалась та же пленка, что и в киноаппарате. Получилась небольшая камера, вмещавшая 2 метра кинопленки и имевшая шторный затвор, взвод которого был сопряжен с транспортировкой пленки. Единственная экспозиция камеры порядка 1/40 с соответствовала рабочей экспозиции киноаппарата. С помощью такой камеры-экспонометра делалось несколько снимков с различными диафрагмами, пленка тут же проявлялась и по полученным результатам определялась правильная экспозиция для киносъемки.

Эта экспонометрическая фотокамера отличалась еще одним весьма существенным нововведением – Барнак увеличил в ней съемочный кадр в два раза, объединив в один два кинокадра 18х24 мм и создав тем самым принципиально новый формат кадра – 24х36 мм. Новый формат позже назовут «леечным» и он станет основой малоформатной фотографии. Значительному шагу вперед в осуществлении идеи Барнака создать небольшой и удобный фотоаппарат способствовала и меньшая по сравнению с зернистостью фотопластинок того времени зернистость кинопленок. Так из экспонометра возникла фотокамера (рис. 18), названная впоследствии «UR-Leiса», прототип «Лейки».

Первая мировая война прервала систематическую работу над новым фотоаппаратом. Но когда страну захлестнули тяжелый экономический кризис и инфляция, а над предприятием нависла угроза потери квалифицированной рабочей силы вследствие падения сбыта продукции, о камере снова вспомнили. Годы не прошли даром. За это время Барнаком были улучшены затвор и транспортировка пленки, разработаны кассета для зарядки камеры на свету и оптический видоискатель. Впервые был рассчитан объектив для нового формата – эту работу блестяще выполнил профессор Макс Берек.

Вышла так называемая нулевая (предсерийная) партия фотоаппаратов в количестве 31 экземпляра для проверки реакции рынка и профессиональных фотографов. Она получила всемирно известное наименование «LEICA», образованное из первых слогов слов «Лейтц» и «камера».

Новый фотоаппарат официально был представлен на весенней Лейпцигской ярмарке.

Малоформатная камера нового типа (рис. 19), работавшая на стандартной кинопленке, простая и удобная в обслуживании и выполненная с прецизионной точностью, получила право на жизнь. Но Барнак не успокоился. Он упорно и настойчиво работал над совершенствованием своей камеры, снабженной впоследствии стандартным рабочим отрезком, что дало возможность использовать сменную оптику. Затем камера была оснащена встроенным дальномером. Для получения изображения больших размеров начали применяться увеличители и диапроекторы, причем именно Барнак создал первый малоформатный диапроектор.

П. Виркоттер запатентовал первую лампу-вспышку. Порошок магния помещался в стеклянный баллон, содержащий воздух или кислород при низком давлении. Магний воспламенялся при прохождении электрического тока через проволоку, покрытую магнием.

Франк Гейдек разработал зеркальный фотоаппарат с двумя объективами под названием «ROLLEIFLEX», в котором применена 60-мм фотопленка. Один из двух объективов камеры применяется для рассматривания объекта съемки на матовом стекле с помощью зеркала, а другой – для фотографирования.

В настоящее время наиболее распространенными являются 35-мм однообъективные зеркальные фотоаппараты.

Т. Остермайер усовершенствовал лампу-вспышку, заменив магний порошком алюминия. Эта лампа-вспышка промышленно производилась в 1930-x годах. Будучи портативным переносным источником света, она нашла широкое применение.

Г. Эджертоном были разработаны первые электронные фотовспышки, которые сегодня полностью заменили одноразовую лампу-вспышку во многих случаях съемки.

Акционерное общество Ikon Zeiss AG выпустило в продажу аналогичную камеру, названную «CONTAX». Она имела встроенный видоискатель, совмещенный с фокусирующим механизмом. Этот тип известен как фотоаппараты с дальномером. Они дают размер кадра 24х36 мм на роликовой пленке шириной 35 мм.

Среднеформатные фотокамеры, в которых применяется пленка шириной 60 мм, также являются портативными, но обеспечивают повышенное качество воспроизведения деталей по сравнению с 35-мм камерами.

В Германии была выпущена первая 35-мм зеркальная однообъективная фотокамера для коммерческих целей «Kine Exakta Model One». При съемке эта камера располагалась на уровне пояса, как и зеркальный аппарат с двумя объективами, поскольку изображение объекта отражалось зеркалом и рассматривалось сверху.

Фирма Zeiss выпустила 35-мм фотокамеру «Contax S», которая имела пентапризму, расположенную над матовым стеклом так, что фотографировать нужно было на уровне глаз.

Все эти фотокамеры были сконструированы для съемки при дневном свете, и хотя их объективы имели значительную светосилу, они не могли использоваться при низком уровне освещенности.

Р. Бунзен в Германии и Г. Роско в Англии сообщили о возможности получить высокую освещенность при сгорании магния и предложили этот способ в качестве возможного источника света для фотосъемки.
Список использованных источников

Фото- кинотехника. Энциклопедия. Под ред. Е. А. Иофиса. – М.: Советская энциклопедия, 1981. – 445 с.
К. В. Чибисов. Общая фотография. – М.: Искусство, 1984. – 447 с.
П. Тауск. Из истории фотографии. (Изобретение фотографии с точки зрения потребностей человеческого общества) // Revue fotografie. – 1979. –№ 1. – С. 30 – 35.
Редько. А. В. Фотография. – М.: Легпромбытиздат, 1995. – 304 с.
Я. Боучек. О структуре фотоизображения на знаменательных этапах развития фотографии (часть 1) // Revue fotografie. – 1986. –№ 1. – С. 42 – 49.
Я. Андел. Заметки к истории фотографии. Первые реакции на изобретение фотографии. // Revue fotografie. – 1974. –№ 1. – С. 8 – 9.
Я. Боучек. О структуре фотоизображения на знаменательных этапах развития фотографии (часть 2) // Revue fotografie. – 1986. –№ 1. – С. 42 – 49.
Ж. Фаж. Остановимся на мгновение… Столетие бромосеребряно-желатинового способа // Сов. фото. – 1971. – № 7. – С. 39 – 40.
А. Фомин. К 100-летию хронофотографии // Сов. фото. – 1982. – № 8. – С. 44.
С. А. Морозов. Творческая фотография. – М.: Планета, 1986. – 416 с.
П. Климент. Этьенн Жюль Марей (1830 – 1904 г.г.) и хронофотография // Revue fotografie. – 1989. –№ 2. – С. 20 – 27.
К. Йирманн. Майбридж – гениальный фотограф и убийца // Revue fotografie. – 1973. –№ 2. – С. 63 – 64.
Б. Кучеренко. Оскар Барнак – изобретатель малоформатной камеры // Сов. фото. – 1982. – № 10. – С. 40 – 41.
И. Чип. Волшебные витражи братьев Люмьер (Воспоминание об «Автохроме») // Revue fotografie. – 1989. –№ 1. – С. 83 – 84.

Человек с незапамятных времен стремился к изобразительным формам. Чему свидетельство - пещера Альтамира в Испании, открытая археологом Саутуолой и его дочерью в 1879 году. Это своего рода галерея первобытного искусства. У живописи - обширная история. Но до XIX века человеку не было доступно для запечатления мгновение. Изобретение фотографии сделало возможным и это. Сегодня мы поговорим об истории фото.

Фотография - это...

Способ светописи, одна из техник рисования с помощью света. Метод, позволяющий получить закрепленное изображение на пленке или на матрице фотокамеры.

Французский историк кино Андре Базен в своей книге “Что такое кино” отмечал, что фотография, если ее сравнивать с той же живописью, оригинальна хотя бы тем, что по сути она объективна. Изобретения фотоаппарата стало причиной такого прецедента: впервые в истории искусства между предметом и его изображением не стоит ничего, кроме другого предмета. И что образ окружающей действительности образуется, исходя из технической заданности, без полного влияния человека.

  • Со многим теперь можно поспорить. Хотя бы с тем, что влияние человека на фотографический образ ограничено. Каждый, кто серьезно занимается фотографией, скажет, что творческая составляющая здесь так же велика, как и в живописи. В одном Базен прав абсолютно: фотография кардинально повлияла на создание образов внешнего мира.

Самая первая фотография в мире сделана Жосефом Ньепсом в 1826 году при помощи камеры обскуры, хотя за четыре года до этого он тоже сделал закрепленное изображение, но оно не сохранилось. “Вид из окна” считается первой фотографией в истории.

Но не взялось же это все из ниоткуда, в самом деле?! Естественно, как и любому великому изобретению, предшествовали века и даже тысячелетия приближений к техническому чуду.

Еще во времена античности люди замечали, что солнечный луч, проходя через маленькое отверстие в темную комнату, запечатлевает на плоскости уменьшенную копию предметов и в перевернутом виде. Один из первых, кто облек наблюдения в мысли о камере-обскуре, был мыслитель Аристотель.

  • Камера-обскура (или “темная комната”) - предтеча фотографии. Наиболее простейшее устройство, которое позволяет получить оптическое изображение предметов.

Это в общем-то затемненное помещение или большой ящик, часть которого освещается солнцем. Камеры-обскуры активно использовали как в Европе, так на Востоке (в частности - в Китае). Оно позволяло получать не очень резкие изображения. Также ее использовали в области астрономии для наблюдения за небесными светилами. Художник и изобретатель Леонардо да Винчи первым из художников опробовал это устройство для зарисовок с натуры, о чем подробно рассказал в одном из трактатов.

Современная история развития фотографии

Она начинается уже в XVIII веке, как это часто бывает, со случайности. Физик Шульце, в ходе своих опытов, смешал мел, азотную кислоту и серебро. Он заметил, что солнечные лучи, попадая на смесь, делают ее темной. Участки, находящиеся в тени, остаются в неизменном виде.

Он немного поэкспериментировал с этим всем, ему удалось даже получить некоторые снимки, но он не задался целью научиться закреплять полученное, так что никаких первых фото не сохранилось. Зато открытие стало толчком для цепи событий, приведших к изобретению фотографии спустя век. Кстати, параллельно сделал подобное открытие русский дипломат Бестужев-Рюмин.

Мы уже говорили в самом начале о Ньепсе. Так вот именно он, после нескольких неудачных попыток, научился закреплять полученные изображения. Но экспозицию приходилось выдерживать в течение 8-ми часов. использовался же принцип старой-доброй обскуры.
Немаловажный вклад в развитие фотографии внесли Дагер и Тальбот. Это, кстати, препятствовало тиражирования снимков.
Способ получения изображения, придуманный Дагером, заключался в использовании медной пластинки и серебра, в получасовом экспонировании и проявлении рисунка над парами ртути. Отсюда пошло слово “дагеротипия”.

Именно Луи Дагер, развив наработки Ньепса, сделал первый в истории фотопортрет и сумел сохранить снимок. Все, у кого был или есть пленочный фотоаппарат, наверное помнят, что сначала получается негатив снимка, а потом он проявляется. У Дагера все было наоборот - он изначально получал позитив.

Луи Дагер, по праву считающийся изобретателем фотографии, опубликовал свои открытия, обрел славу, но потом отошел от дел и остаток своей жизни прожил вдали от “житейских морей”, в каком-то уютном захолустье. И умер в 1851 году, когда слава о нем и о его детище разлетелась по миру.

Уильям Тальбот придумал способ получать негативы и тиражировать фотографии. Для этого он использовал бумагу, которая пропитывалась хлоридом серебра (хлористым серебром).

  • Хлористое серебро - серебряная соль хлороводородной соляной кислоты.

На выходе - отличное качество снимков и возможность размножения фотографий! На экспозицию, правда, тратилось прилично: около часа.

Параллельными изысканиями занимался бразильский художник Э. Флоранс, но он не стал патентовать свое изобретение.
А само слово “фотография” впервые употребили два астронома, независимо друг от друга.

В 1842 году Джоном Гершелем также была придумана цианотипия. Процесс заключался в покрытии бумаги растворами железных солей и экспонировании их в контакте с негативом. Те места, куда свет попадал, становились синими, остальные - оставались белыми. Промывка в воде усиливала специфический синий цвет, делая полутона и тени более контрастными.

Основным такой способ не стал. Но и сегодня есть ценители именно такой фотографии, ну или стилизации под нее.

Получение снимков при помощи дагеротипии было слишком накладным и неудобным. Калотипия (так назывался способ, предложенный Тальботом) оказался более совершенным, менее трудоемким и дорогим. Родственник Ньепса, Сен-Виктор заменил бумагу на стекло, намазанное клестером или яичным белком, активизированный солями серебра.

Как мы видим, вопрос “кто изобрел фотографию” не столь прост, как кажется на первый взгляд.

Альбиумная фотография

В середине XIX века Стэнли Арчер придумал новый способ, который был назван альбуминным и просуществовал в течение пятидесяти лет, вплоть до изобретения желатиновой печати.

  • Суть метода: бумага покрывается смесью яичного белка, соли и аррорута (что-то вроде крахмала) и высушивается. Образовавшаяся ровная поверхность в свою очередь покрывается нитратом серебра и экспонируется в контакте с негативом. Дальнейших химических манипуляций не требуется - рисунок появляется благодаря воздействию солнечных лучей. Минусы метода: со временем изображение попросту осыпается. Однако этот метод, благодаря ряду плюсов, вытеснил конкурирующие способы и оставался популярным, пока сам не был смещен на обочину истории желатиново-серебряными пластинами, ставшими прообразом современной фотографии.

Желатиновая печать пошла с Ричарда Медокса, изобретателя этого способа. Использование желатиново-серебряных отпечатков и стало прообразом более привычной нам целлулоидной фотографии. Посмотрите сами на снимок, сделанный таким способом:

Это позитивы, проявляемые с помощью специальных реагентов на фотобумаге, которая покрыта эмульсией с галогенидами серебра. Фотобумага выпускалась на бромосеребряной и хромосеребряной основе. Преимущество перед альбуминным способом: - стабилизация и оптимизация процесса.


Появление цветной фотографии

Это удивительно, но появилась она через десять лет после того, как Луи Дагер покинул этот бренный мир, а вовсе не в XX веке (так думают из-за того, что цветное кино появилось в это время). Все началось с так называемой тартановой ленты, придуманной Д. Максвеллом (он взял за основу метод цветоделения).

  • Метод цветоделения - способ, при котором используется три камеры, у каждой из которых стоит свой светофильтр: красный, синий, зеленый.

Герман Фогель пошел дальше, исследовав вопрос влияния на одну и ту же поверхность лучей разной длины. Он придумал специальные сенсибилизаторы (от слова “сенсибилити”), повышающие чувствительность серебряной поверхности. Особый упор он сделал на зеленый участок спектра. Его ученик Мите разработал и другие цветные участки. Он же придумал специальную камеру, позволяющую использовать три цвета и соответствующий ей проектор. Публичная демонстрация устройств состоялась в Берлине в 1902 году.

Ученик Менделеева и Митте Сергей Прокудин-Горский пошел еще дальше, сократив время экспозиции и разработав красно-оранжевый участок спектра. Его же наработки помогли увеличить число тиража фотографий. Да и цветные фотографии, которые у него получались, больше похожи на современные.

Впоследствии фотография завоевывала все большее и большее влияние. К делу подключились знаменитые братья Люмьер (создатели кинематографа), выпустившие специальные фотопластины для получения цветных фотографий, которые вошли в широкой распространение и вывели фотодело за пределы лабораторий и дали ей дорогу в жизнь.

Художественная фотография или, как ее называли на заре ее появления, светопись - один из самых молодых видов искусства. История художественной фотографии насчитывает, без малого, два столетия, что относительно немного в историческом контексте. Тем не менее, за столь короткий промежуток времени искусство фотографии смогло превратиться из сложного мастерства, доступного лишь немногим, в одно из самых массовых направлений, без которого немыслима современная жизнь.

Первые фотографические опыты

Надо сказать, что появление фотографии тесно связано с открытием оптических и химических эффектов, которые в итоге позволили сделать столь эпохальное открытие. Первым из них стало создание так называемой камеры-обскуры - примитивного устройства, способного проецировать перевернутое изображение. По сути, она представляла собой темный ящик с маленьким отверстием в одном конце, через которое лучи света, преломляясь, «рисовали» изображение на противоположной стенке. Изобретение камеры-обскуры особенно понравилось художникам, которые размещали в месте, куда проецировалось изображение, лист бумаги и зарисовывали его, накрывшись темной тканью.

Эффект камеры-обскуры, надо сказать, удалось открыть абсолютно случайно. Вероятнее всего, люди попросту замечали, что свет, падающий из тонкой щели или круглого отверстия на темную стену, «проявляет» на ней перевернутое изображение происходящего снаружи. Собственно говоря, и переводится понятие «камера-обскура» с латыни именно как «темная комната».

Однако сам факт открытия данного оптического эффекта, которое было сделано еще в глубокой древности, не означал, само собой, изобретения фотографии. Ведь изображение мало спроецировать, его важно еще зафиксировать на определенном носителе.

И вот тут стоит вспомнить открытие явления светочувствительности ряда материалов. И одним из изобретателей данного эффекта стал наш соотечественник, известный политический деятель граф Алексей Петрович Бестужев-Рюмин.

Будучи химиком-любителем, он заметил, что растворы солей железа изменяют свой изначальный цвет под воздействием света. Примерно тогда же, в 1725 году, физик из Галльского университета, немец Иоганн Генрих Шульце, при попытках создания светящихся в темноте веществ обнаружил, что смесь мела и азотной кислоты с небольшим количеством растворенного серебра темнеет при попадании света. При этом раствор, находящийся в темноте, совершенно не изменяет свои первоначальные характеристики.

После этого наблюдения Шульце провел несколько экспериментов, где клал на бутылку с раствором различные фигуры из бумаги. В итоге получался фотографический отпечаток изображения, который исчезал после того, как на поверхность попадал свет или когда раствор перемешивался. Сам исследователь не придал своему опыту должного значения, однако после него многие ученые продолжили наблюдения за материалами, обладавшими фотоэффектом, что, собственно говоря, и привело спустя столетие к изобретению фотографии.

История черно-белой фотографии

Как известно, наверное, многим, первый фотоснимок был сделан французским экспериментатором Жозефом Нисефором Ньепсом (Nicéphore Niepce) в далеком 1822 году. Жозеф от рождения имел аристократические корни и происходил из богатой семьи. Отец будущего «отца фотографии» служил советником при короле Людовике XV, а мать была дочерью весьма обеспеченного юриста. Само собой, что в молодости Жозеф получил прекрасное образование, обучаясь в наиболее престижных колледжах Франции.

Изначально родители готовили сына к деятельности в церковной сфере, однако молодой Ньепс предпочел иное направление, став офицером революционно-повстанческих сил. В ходе военных действий Жозеф Ньепс существенно подорвал здоровье и ушел в отставку, после чего он в 1795 году женился на молодой красавице Агнессе Рамеру и стал жить в Ницце, работая штатным государственным служащим.

Надо сказать, что молодой человек с детства интересовался физикой и химией, а потому спустя шесть лет он возвращается в родной город, где вместе со старшим братом Клодом начинает работать в сфере изобретательской деятельности. С 1816 года Ньепс стал предпринимать попытки найти способ, который бы позволил закрепить на физическом носителе изображение, возникающее в камере-обскуре.

Уже первые эксперименты с серебряной солью, изменяющей цвет под воздействием солнечных лучей, показали основную техническую трудность создания первой фотографии. Ньепсу удалось нанести получить негативное изображение, однако при извлечении пластинки, покрытой солью, из камеры-обскуры стало ясно, что изображение целиком исчезает. После этих неудачных попыток Жозеф решил во что бы то не стало закрепить полученное изображение.

В своих дальнейших опытах Ньепс решил отойти от использования серебряной соли и уделить внимание природному асфальту, который также изменял свои первоначальные свойства под воздействием солнечного излучения. Минусом такого решения была крайне низкая светочувствительность медных или известняковых пластин, покрытых этим веществом. Данные опыты оказались удачными, и после протравливания асфальта кислотой изображение на пластинке сохранялось.

Считается, что первый успешный опыт по фиксации фотографического изображения Жозеф Ньепс осуществил в 1822 году, сфотографировав накрытый стол в своей комнате. К сожалению, то, самое первое в мире, фото не дошло до нашего времени, а сохранился лишь более поздний снимок «Вид из окна», который по праву считается самой известной в мире фотографией. Сделан он был в 1826 году, а на его экспонирование ушло долгие восемь часов.

Этот снимок, по своей сути, являлся первым негативным изображением, и при этом было рельефным. Последний эффект достигался за счет травления покрытой асфальтом пластинки. Преимуществом метода была возможность создания большого числа подобных изображений, однако минус был очевиден - столь длительная выдержка делала его пригодным лишь для съемки статичных сюжетов, но совершенно не подходила даже для портретной съемки. Тем не менее, опыты Ньепса доказали миру, что фиксация изображения в камере-обскуре возможна и дали толчок к исследованиям других ученых, открывших для нас мир традиционной фотографии.

Так, уже в 1839 году другой исследователь, Жак Даге́р (Jacques Daguerre), заявил о новом способе получения фотографического изображения на посеребренной медной или целиком серебряной пластинке. Технология Дагера подразумевала покрытие такой фотопластинки иодидом серебра - светочувствительным слоем, который образовывался на ней при обработке с помощью паров йода. Закрепить изображение Дагеру удалось благодаря использованию паров ртути и поваренной соли.

Технология, в дальнейшем получившая название дагерротипии, оказалась гораздо более совершенной, нежели способ получения фотоизображения у Ньепса. В частности, для экспозиции пластинки требовалось гораздо меньше времени (от 15 до 30 минут), а качество снимка было значительно выше. Кроме того, дагерротипия позволяла получать позитивное изображение, что также было существенным прогрессом в сравнении с негативным изображением, полученным Ньепсом. На протяжении многих десятилетий именно дагерротипия была практически единственным применимым в реальной жизни способом фотографирования.

Надо сказать, что в то же время в Англии Уильям Генри Фокс Тальбот создал еще один способ получения фотоизображений, названный им калотипией. Светочувствительным элементом в камере-обскуре Тальбота служила бумага, обработанная хлористым серебром. Технология обеспечивала неплохое качество снимков и была пригодная для копирования, в отличие от пластинок Даггера. Для экспонирования бумаги требовалась выдержка в течение одного часа. Кроме того, в 1833 году художник по имени Эркюль Флоранс также заявил о собственном методе получения фотоизображения с помощью нитрата серебра. Впрочем, в те годы данный метод распространения не получил, ну а в дальнейшем аналогичная методика легла с основу создания стеклянных пластинок и пленок, которые и стали определяющим для фотографии носителем изображения на долгие десятилетия.

Кстати, появлению термина «фотография» мир обязан астрономам Джону Гершелю и Иоганну фон Медлеру, которые впервые ввели его в обиход в 1839 году.

История цветной фотографии

Как известно, первый фотоснимок Ньепса, равно как и все последующие получаемые изображения, были исключительно монохромными или, как мы привыкли говорить, черно-белыми. Однако мало кому известно, что уже в середине XIX века предпринимались попытки получить цветное изображение. Именно эти опыты и дали толчок истории развития в мире цветной фотографии.

Первым успешно созданным и закрепленным цветным фотоснимком можно считать изображение, полученное в 1861 году исследователем Джеймсом Максвеллом. Правда, технология получения такой фотографии оказалась крайне сложной: съемка изображения производилась сразу тремя фотокамерами, на которые монтировались три светофильтра (по одному на каждую) красного, зеленого и синего цветов. При проецировании данного изображения удавалось передать цвета окружающей действительности. Впрочем, такая методика явно не подходила для широкого применения.

Приблизить цветную фотографию к практическому воплощению позволило открытие сенсибилизаторов - веществ, повышающих чувствительность соединений серебра к лучам света различной длины. Впервые сенсибилизаторы удалось получить фотохимику Герману Вильгельму Фогелю, который разработал состав, который был чувствителен к воздействию волн зеленого участка светового спектра.

Обнаружение данного физического явления позволило реализовать практическое воплощение цветной фотографии, основоположником которой стал ученик Фогеля Адольф Митте. Он создал несколько видов сенсибилизаторов, которые делали фотопластинку чувствительной во всем световом спектре, и разработал первый вариант фотокамеры, способной генерировать цветное изображение. Подобная фотография могла быть отпечатана полиграфическим методом а также демонстрироваться с использованием специального проектора, имеющего три луча различных цветов.

Надо сказать, что огромная роль в развитии технологии Митте и, что самое главное, в ее практической реализации принадлежит русскому фотографу Сергею Прокудину-Горскому, который усовершенствовал метод, создал собственный сенсибилизатор и изготовил несколько тысяч цветных фотографий самых удаленных уголков Российской Империи. В основе работы фотокамеры Прокудина-Горского лежал принцип цветоделения, который сегодня является основой работы любого типографского оборудования, а также матриц цифровых фотоаппаратов. Впрочем, работы Прокудина-Горского настолько интересны, что мы решили рассмотреть особенности их создания в отдельной СТАТЬЕ .

Надо сказать, что технология цветоделения была далеко не единственной, применяемой для создания цветных изображений. Так, в 1907 году «отцы кинематографа», братья Люмьер, представили собственный способ получения цветного изображения с помощью специальных фотопластин, названных ими «Автохром». Метод Люмьеров обладал множеством недостатков, уступая в качестве технологии Прокудина-Горского и, собственно, Митте, однако он был более простым и доступным. При этом сами цвета на фото не отличались высокой стойкостью, изображение сохранялась исключительно на пластинах, а сам кадр получался довольно зернистым. Впрочем, именно технология Люмьеров оказалась наиболее «живучей», просуществовав вплоть до 1935 года, когда компания Kodak представила метод получения цветных фотографий под названием Kodachrome. При этом за три года до этого была представлена технология Agfacolor. Следующей важной вехой в развитии цветного фото стала презентация системы «моментального фото» от Polaroid в 1963 году, а затем - появление первых цифровых технологий фиксации изображения.

История цифровой фотографии

Появление цифровой фотографии во многом связано с развитием космических программ и «гонки вооружений» между США и Советским Союзом. Именно тогда были разработаны первые методики фиксации цифрового изображения и его передачи на расстоянии. Само собой, что развитие технологий позволило в дальнейшем вывести ее на коммерческий рынок.

Надо сказать, что первые цифровые фотокамеры, использовавшиеся в космических аппаратах, не предусматривали вывода изображений на физические носители. Этот же недостаток был присущ и первым цифровым фотоаппаратам, представленным Texas Instruments в 1972 году, а также появившейся несколько позднее первой цифровой фотокамере Mavica, разработчиком которой выступила японская компания Sony. Впрочем, устранен данный недостаток был довольно быстро, и последующие версии «Мавики» могли подключаться к цветному принтеру для печати изображений.

Несомненный успех позволил компании Сони первой наладить коммерческое производство цифровых фотоаппаратов в различных версиях с общим наименованием Mavica (Magnetic Video Camera). По сути, этот фотоаппарат представлял собой видеокамеру, способную работать в режиме «стоп-кадр» и способный создавать фотографическое изображение размерностью в 570х490 пикселей, которое записывалось сенсором на основе ПЗС-матрицы. Более поздние версии фотокамеры позволяли сразу же производить запись полученных фотографий на флоппи-диски, которые могли сразу же быть использованы на ПК.

Надо сказать, что именно появление данных фотоаппаратов произвело небывалый фурор. Судите сами - для получения фотографического изображения не требовалось специальных знаний, работы с реактивами, использования лабораторий. Снимок получался мгновенно и мог быть сразу отсмотрен на экране ПК, которые к тому времени набирали все большую популярность. Минусом такого подхода оставалось лишь крайне низкое, в сравнении с пленкой, качество получаемой «картинки».

Существенным рывком вперед в истории цифровой фотографии стал ее выход в профессиональный сегмент рынка. В первую очередь, преимущества цифровой фотографии стали ясны репортерам, которым требовалось оперативно передавать результат съемки в издательство. При этом качество цифровой фотографии большинство газет вполне могло бы устроить. Именно для этой целевой аудитории компания Kodak представила в 1992 году первую фотокамеру профессионального класса с индексом DCS 100, которая была построена на основе популярной репортажной «зеркалки» тех лет Nikon F3. Следует сказать, что устройство вместе с накопительным диском оказалось весьма громоздким (фотоаппарат вместе с внешним блоком весил около пяти килограммов), а его стоимость приближалась к отметке в 25 тысяч долларов при том, что качество фотографий было достаточно лишь для их газетной печати. Несмотря на это, репортеры быстро оценили преимущества в виде оперативной передачи и обработки изображений.

Спустя пару лет на рынке появились и первые модели фотокамер «для всех», включая разработку компании Apple - цифровую фотокамеру QuickTake 100. Ее цена в 749 долларов обозначила, что новая технология может быть вполне доступной рядовому потребителю. После этого бурное развитие компьютерных и сетевых технологий способствовало дальнейшей доработки технологии, которая в результате привела к почти полному вытеснению пленки из большинства жанров фотографии, включая профессиональную сферу. Это стало возможным в результате появления фотокамер с крупным размером сенсора, включая 35-миллиметровые модели, а также среднеформатных цифровых фотоаппаратов на основе высококачественных матриц. В результате качество цифровой фотографии вышло на качественно иной уровень.